Does Vitamin D Prevent Type 1 Diabetes?

Does Genetics Influence Supplementation Benefits?

diabetesThe cause of type 1 diabetes is a mystery. If you go to an authoritarian source like the Mayo Clinic, you will discover that:

  • Type 1 diabetes is an autoimmune disease that selectively attacks the insulin-producing islet cells of the pancreas.
  • Certain genetic variants predispose individuals to type 1 diabetes.
  • The autoimmune response may be triggered by a viral infection or other unknown environmental factors in genetically susceptible individuals.
  • The incidence of type 1 diabetes increases as you travel away from the equator, which suggests that vitamin D may be involved.

The idea that vitamin D may be involved is an important concept because it suggests that vitamin D supplementation might reduce the risk of developing type 1 diabetes. This idea was reinforced by a Finnish study (E Hyponnen et al, Lancet, 358: 1500-1503, 2001) published in 2001 showing the vitamin D supplementation of newborn infants reduced the incidence of type 1 diabetes at age 1.

However, subsequent studies in other parts of the world have had mixed results. Some have confirmed the results of the Finnish study. Others have come up empty.

Similarly, some studies have shown a correlation between low 25-hydroxyvitamin D levels in the blood and the development of type 1 diabetes in children, while other studies have found no correlation.

Why the discrepancy between studies? Some of the differences can be explained by differences in the populations studied or differences in study design. But what if there were another variable that none of the previous studies has considered?

The study (JM Norris et al, Diabetes, 67: 146-154, 2018) I review this week describes just such a variable. The authors of the study hypothesized that the association between 25-hydroxyvitamin D levels and the risk of developing type 1 diabetes is influenced by mutations that affect the way vitamin D works in the body. Previous studies have not taken these mutations into account. If the author’s hypothesis is true, it might explain why these studies have produced conflicting results.

In this article, I will answer 3 questions:

  • Does vitamin D prevent type 1 diabetes?
  • If so, is supplementation with vitamin D important?
  • Who will benefit most from vitamin D supplementation?

But, before I answer those questions, I should begin by providing some background. I will start by reviewing the how diet, increased need, disease, and genetics influence the likelihood that we will benefit from supplementation. Then I will review vitamin D metabolism.

Does Genetics Influence Supplementation Benefits?

need for supplementsThe reason so many studies find no benefit from supplementation is that they are asking the wrong question. They are asking “Does supplementation benefit everyone?” That is an unrealistic expectation.

I have proposed a much more realistic model (shown on the left) for when we should expect supplementation to be beneficial. Simply put, we should ask:

  • Is the diet inadequate with respect to the nutrient that is being studied?
  • Is there an increased need for that nutrient because of age, gender, activity level, or environment?
  • Is there a genetic mutation that affects the metabolism or need for that nutrient?
  • Is there an underlying disease state that affects the need for that nutrient?

When clinical studies are designed without taking this paradigm into account, they are doomed to fail. Let me give you some specific examples.

  • The Heart Outcomes Prevention Evaluation study concluded supplementation with folate and other B vitamins did not reduce heart disease risk. The problem was that 70% of the people in the study were getting adequate amounts of folate from their diet at the beginning of the study. For those individuals not getting enough folate in their diet, B vitamin supplementation decreased their risk of heart disease by 15%. This is an example of poor diet influencing the need for supplementation.

The other three examples come from studies on the effect of vitamin E supplementation on heart disease that I summarized in an article in “Health Tips From The Professor” a few years ago. Here is a brief synopsis.

  • The Women’s Health Study concluded that vitamin E did not decrease heart disease risk in the general population. However, the study also found that in women over 65 (who are at high risk of heart disease), vitamin E supplementation decreased major cardiovascular events and cardiovascular deaths by 25%. This is an example of increased need because of age and gender influencing the need for supplementation.
  • The Women’s Antioxidant Cardiovascular Study” concluded that vitamin E did not decrease heart disease risk in the general population. However, when they looked at women who already had cardiovascular disease at the beginning of the study, vitamin E supplementation decreased risk of heart attack, stroke, and cardiovascular death by 23%. This is an example of an underlying disease affecting the need for supplementation.
  • The HOPE study concluded that vitamin E did not decrease heart disease risk in the general population. However, when they looked at individuals with a mutation that increases the risk of heart disease, vitamin E supplementation significantly decreased their risk of developing heart disease. This is an example of genetics affecting the need for supplementation.

These are just a few of many examples. When you ask whether supplementation benefits everyone, the answer is often no. However, when you look at people with inadequate diet, increased need, underlying disease, and/or genetic predisposition, the answer is often yes.

This background sets the stage for the current study. Of course, to understand the author’s hypothesis that mutations in genes involved in vitamin D metabolism might influence the effect of vitamin D on the risk of developing type 1 diabetes, you need to know a little about vitamin D metabolism.

Biochemistry 101: Vitamin D Metabolism

Vitamin D MetabolismWhen sunlight strikes a metabolite of cholesterol in our skin, it is converted to a precursor that spontaneously isomerizes to form vitamin D3. Because this series of reactions is usually not sufficient to provide all the vitamin D3 our bodies require, we also need to get vitamin D3 from diet and supplementation.

However, vitamin D3 is not active by itself. It first needs to be converted to 25-hydroxyvitamin D by our liver and then to the active 1,25-dihydroxyvitamin D. 1,25-dihydroxyvitamin D is an important hormone that regulates many cells in our body.

Some of the 1,25-dihydroxyvitamin D is synthesized by our kidneys and released into the bloodstream. This 1,25-dihyroxyvitamin D binds to vitamin D receptors on the surface of many cells and initiates regulatory pathways that affect metabolism inside the cell.

Other cells take up 25-hydroxyvitamin D and convert it to 1,25-dihydroxyvitamin D themselves. In these cells both the synthesis and regulatory effects of 1,25-dihydroxyvitamin D occur entirely inside the cell.

In both cases, it is 1,25-dihydroxyvitamin D that regulates cellular metabolism. The only difference is the way this regulation is accomplished.

There are two additional points that are relevant to this study.

  • The efficiency of conversion of vitamin D to 25-hydroxyvitamin D varies from person to person.
    • Thus, blood levels of 25-hydroxyvitamin D are considered a more reliable measure of vitamin D status than dietary intake of vitamin D or sun exposure.
    • Blood levels of 25-hydroxyvitamin D levels ≥50 nmol/L are considered optimal, while levels of 30 to <50 nmol/L are considered suboptimal, and levels <30 nmol/L are considered deficient.
  • 1,25-dihydroxyvitamin D binds to the vitamin D receptor on immune cells. This initiates a series of reactions that decrease the risk of autoimmune responses by our immune system.

How Was This Study Done?

Clinical StudyThis study was called TEDDY (The Environmental Determinants Of Type 1 Diabetes in the Young). Between September 2004 and February 2010, 424,788 newborn infants from 6 medical centers in Colorado, Georgia, Washington, Finland, Germany, and Sweden were screened for genes that predispose to type 1 diabetes.

The investigators identified 21,589 high-risk infants, and 8,676 of them were enrolled in this study before age 4 months. Clinic visits for the children occurred every 3 months between 3 and 48 months of age and every 6 months thereafter.

  • A DNA sample was taken at the time they entered the study and analyzed for mutations in genes involved in vitamin D metabolism.
  • 25-hydroxy vitamin D levels were obtained at each office visit. Because some studies have suggested the vitamin D status during the first year of life is important, the data were analyzed in two ways.
    1. An average of all 25-hydroxyvitamin D levels (referred to as “childhood 25-hydroxyvitamin D levels”).
    1. An average of 25-hydroxyvitamin D levels during the first 12 months (referred to as “early infancy 25-hydroxyvitamin D levels”).
  • Serum autoantibodies to pancreatic islet cells were measured at each office visit as a measure of an autoimmune attack on those cells. Persistent autoimmune response was defined as positive autoantibodies on two consecutive office visits.

While this study did not directly measure type 1 diabetes, children with an autoimmune response to their pancreatic islet cells are highly likely to develop type 1 diabetes. Thus, for purposes of simplicity I will refer to “risk of developing type 1 diabetes” rather than “persistent autoimmune response” in describing these results.

    1. 418 children developed persistent autoantibodies to their pancreatic islet cells during the study. The onset of this autoimmune response ranged from 2 months to 72 months with an average of 21 months.
    1. These children were compared to 3 matched controls from their medical center who did not develop an autoimmune response.

This study was remarkable for two reasons:

1) It was much larger than previous studies. This gave it greater power to detect an effect of vitamin D status on the risk of developing type 1 diabetes.

2) This was the first study to ask whether mutations in genes controlling the metabolism of vitamin D influenced the effect of vitamin D on the risk of developing type 1 diabetes.

Does Vitamin D Prevent Type 1 Diabetes?

Vitamin DThe study compared the risk of developing type 1 diabetes in children whose 25-hydroxyvitamin D levels were optimal (≥50 nmol/L) to children whose 25-hydroxyvitamin D levels were suboptimal (30 to <50 nmol/L). The results were:

  • Optimal vitamin D status during childhood was associated with a 31% decrease in the risk of developing type 1 diabetes.
  • Optimal vitamin D status during early infancy (first 12 months) was associated with a 40% decrease in the risk of developing type 1 diabetes.

In other words, having optimal vitamin D status significantly reduces the likelihood of developing of type 1 diabetes in childhood.

  • 25-hydroxyvitamin D levels >75 nmol/L provided no additional benefit.

In other words, you need sufficient vitamin D, but higher levels provide no additional benefit.

  • They tested 5 genes involved in vitamin D metabolism to see if they influenced the effect of vitamin D on the risk of developing type 1 diabetes. Only the VDR (vitamin D receptor) gene had any influence.
    • When the VDR gene was fully functional, optimal vitamin D status had no effect on the risk of developing type 1 diabetes. This means that even suboptimal (30 to <50 nmol/L) levels of 25-hydroxyvitamin D were sufficient to prevent type 1 diabetes when the vitamin D receptor was fully functional.
    • Only 9% of the children in this study were vitamin D deficient (<30 nmol/L 25-hydroxyvitamin D). Presumably, these children would be at high risk of developing type 1 diabetes even with a fully functional VDR gene. However, there were not enough children in that category to test this hypothesis.
  • When they looked at children with mutations in the VDR gene:
    • Optimal vitamin D status during childhood was associated with a 59% decrease in the risk of developing type 1 diabetes.
    • Optimal vitamin D status during early infancy (first 12 months) was associated with a 67% decrease in the risk of developing type 1 diabetes.

In short, the need for optimal vitamin D levels to reduce the risk of developing type 1 diabetes is only seen in children with a mutation in the VDR (vitamin D receptor) gene.

  • This is a clear example of genetics affecting the need for a nutrient.
    • For children with a fully functional VDR gene, even 30-50 nmol/L 25-hydroxyvitamin D was sufficient to reduce the risk of developing type 1 diabetes.
    • However, children with mutations in the VDR gene required ≥50 nmol/L 25-hydroxyvitamin D to reduce their risk of developing type 1 diabetes.
  • This is also an example of genetics affecting the need for supplementation with vitamin D.
    • 42% of the children in this study had suboptimal levels of 25-hydroxyvitamin D. Those who also have a mutation in the VDR gene would require supplementation to bring their 25-hydroxyvitamin D up to the optimal level to reduce their risk of developing type 1 diabetes.
    • Other studies have estimated that up to 61% of children in the US may have suboptimal 25-hydroxyvitamin D levels.

What Does This Study Mean For You?

Questioning WomanLet’s start with the three questions I proposed at the beginning of this article.

1) Does vitamin D prevent type 1 diabetes? Based on this study, the answer appears to be a clear yes. However, this is the first study of this kind. We need more studies that into account the effect of mutations in the VDR gene.

2) If so, is supplementation with vitamin D important? If we think in terms of supplementation with RDA levels of vitamin D or sufficient vitamin D to bring 25-hydroxyvitamin D into the optimal range, the answer is also a clear yes. However, there is no evidence from this study that higher doses of vitamin D provide additional benefits.

3) Who will benefit most from vitamin D supplementation? Based on this study, the children who will benefit the most from vitamin D supplementation are those who have a suboptimal vitamin D status and have a mutation in the VDR (vitamin D receptor) gene. To put this into perspective:

    • Up to 60% of children and adults in this country have suboptimal vitamin D levels.
    • The percentage of suboptimal vitamin D levels is highest for people who are obese, have pigmented skin, are institutionalized (eg, elderly in nursing homes), and/or live far from the equator.
    • Supplementation with a multivitamin containing the RDA for vitamin D reduces the risk of having suboptimal vitamin D status by 2.5 to 5-fold depending on the person’s ethnicity.
    • This study may be just the tip of the iceberg. The vitamin D receptor is also found on many other cells that control important biological functions.

Finally, if you are a parent or parent-to-be, you probably have several questions. Here are the ones I have New Parentsanticipated:

#1: Is my child at risk for developing type 1 diabetes? If you or a close family member has type 1 diabetes, you can assume your child is genetically predisposed to developing type 1 diabetes. Other factors that increase your child’s risk of developing type 1 diabetes are obesity, non-White ethnicity, and geographical location far from the equator.

#2: Should I have my baby tested for genetic predisposition to type 1 diabetes? That is not currently recommended. Just be aware of the risk factors listed above.

#3: Should I have my baby tested for VDR mutations? That is unnecessary. If your child has a VDR mutation, they just need sufficient vitamin D, not mega doses of vitamin D. And there are lots of other reasons for making sure your child gets sufficient vitamin D.

#4: How much vitamin D should my child be getting? The recommendation is 400 IU up to age 1 and 600 IU over age 1.

#5: Should I give my child vitamin D supplements? It is a good idea. For children over age 1, I recommend a multivitamin supplying 600 IU of vitamin D.

For infants, the American Association of Pediatrics recommends 400 IU vitamin D drops, regardless of whether the infants are breast or formula fed. That is because studies during the first year of life show that less than one-fifth of all infants get the recommended 400 IU/d from any source, and fewer than one out of 10 breast-fed infants meet the requirement – even if the mother is getting adequate vitamin D in their diet.

One Caution: I do not recommend exceeding 400 IU for infants or 600 IU for children unless directed by your health care provider. In terms of the risk of developing type 1 diabetes, your child needs sufficient vitamin D, and more is not better.

#6: Should I have my child tested for 25-hydroxyvitamin D levels? That is not done routinely at the present time. However, if your child has one or more of the risk factors listed above, it is a conversation you should have with your health care provider.

The Bottom Line

While it is widely accepted that vitamin D helps reduce the risk of developing type 1 diabetes in childhood, that has been difficult to prove. Clinical studies have provided conflicting results. The authors of a recent study postulated that the discrepancies between studies may have arisen because the studies neglected the effect of mutations in genes controlling vitamin D metabolism which may affect the ability of vitamin D to reduce the risk of developing type 1 diabetes.

This study found that:

1) Infants and children with optimal vitamin D status (25-hydroxyvitamin D levels ≥50 nmol/L) were 31-40% less likely to develop type 1 diabetes than children with suboptimal vitamin D status (25-hydroxyvitamin D = 30 to <50 nmol/L).

2) However, the effect of vitamin D on the risk of developing type 1 diabetes was only seen in children with one or more mutations in the VDR (vitamin D receptor) gene. To interpret this observation, you need to know that:

    • Type 1 diabetes is caused by an autoimmune attack on the pancreatic islet cells that release insulin.
    • 1,25-dihydroxyvitamin D promotes immune tolerance and decreases the risk of autoimmune responses.
    • 1,25-dihydroxyvitamin D exerts this effect by binding to the vitamin D receptor on the surface of immune cells.

3) Thus, mutations in the VDR gene modify the effect of vitamin D on the risk of developing type 1 diabetes. Specifically:

    • When the VDR gene is fully active, even suboptimal levels of vitamin D appear to be sufficient to prevent the development of type 1 diabetes in childhood.
    • However, when the VDR gene has mutations that reduce its activity, suboptimal levels of vitamin D no longer prevent type 1 diabetes. Optimal levels of vitamin D are required to reduce the risk of developing type 1 diabetes.

This is an example of genetics increasing the need for a nutrient (vitamin D) and increasing the need for supplementation to make sure that optimal levels of that nutrient are achieved.

While this study focused on the effect of vitamin D on the development of type 1 diabetes, this may just be the tip of the iceberg. The vitamin D receptor is also found on many other cells that control important biological functions.

For more details, read the article above. You will probably want to read the section “What Does This Mean For You?”, including my recommendations for parents of young children

These statements have not been evaluated by the Food and Drug Administration. This information is not intended to diagnose, treat, cure, or prevent any disease.

Preparing For The New Normal

Can Supplements Strengthen My Immune System?

COVID-19The United States and the rest of the world are facing the biggest challenge of our lifetimes. COVID-19 has killed hundreds of thousands of people and decimated economies around the world.

As of the publication date of this article we have no vaccine and only one treatment option that appears to be about 30% effective in a preliminary clinical trial. People are scared.

The question I get asked most often is: “Can supplements protect me from COVID-19”. That’s not a question I can answer with confidence. The few studies we have are small and preliminary. Plus, there is too much we still do not know about COVID-19.

However, there are studies about how diet and supplements affect the immune system. I can answer the question, “Can Supplements Strengthen My Immune System”, with confidence. That will be the focus of this article.

However, before covering that, let me take an objective look at what our “New Normal” will be like and how we can prepare for it.

Preparing For The New Normal

ProfessorAs a scientist I am appalled by the divisive and hyper-partisan arguments about how we should be handling the COVID-19 pandemic. This is a time when our country should be united against a common enemy. Instead I see myths and lies propagated on both sides of this important issue.

The press only magnifies the problem by repeating the myths without fact checking. Whether they are on the left or the right, the media only repeats myths that fit their narrative. As a result, people like you are confused and scared.

Let me try to give you a more objective and scientific view of what the “New Normal” will look like, and how we can prepare for it.

Let’s start with one of the biggest arguments over the past few weeks – when should we reopen our country. This argument is based on the myth that if we wait long enough, the virus will be gone, and life can return to normal.

Nothing could be further from the truth. In reality viruses don’t work that way. They continue to circulate through the population at low levels. Whenever we emerge from our homes and resume our daily lives, the virus will be lurking. There will be flare-ups. There will be hot spots. There will be deaths. And the press will report every one.

So, the question should not be when we emerge. It should be how we emerge. We should emerge cautiously. We should continue to take appropriate precautions. These precautions will become our “New Normal” until we have an effective vaccine. By now, you probably have the CDC precautions memorized, but let me repeat them here:

  • If you are sick, stay home until you recover. If your symptoms worsen, contact your doctor right away.
  • If you are exposed, get tested right away and self-quarantine for 14 days if you test positive.
  • When you go out, wear a face mask and practice social distancing. When you get home, wash your hands in soap and water for 20”.
  • For now, we will need to avoid the customary handshake (and if you are from the South like me, the customary hug).
  • If you are very old or very sick, you should stay home as much as possible. If you have a loved one in this category, you should do everything in your power to protect them from exposure.
  • The guideline that is hardest to project into the future is the one on crowd size. It is hard to predict what the CDC will recommend about crowd size as part of our “New Normal” a few months from now. However, because this virus is extremely contagious, it may be risky to attend any gatherings where there are large, tightly packed crowds for the foreseeable future. This could include some of our favorite things – like movies, live theater, night clubs, and sporting events.Myth Versus Facts

Finally, there is another big myth, namely that the virus will simply disappear once we have a vaccine. Vaccines reduce your risk of exposure because fewer people are carriers of the virus. However, coronaviruses never disappear. They continue to circulate in the population for decades.

Even after we have a vaccine, people will still get sick from COVID-19. People will still die from COVID-19. The difference is that we will no longer hear about COVID-19 cases and deaths on the nightly news. Those cases and deaths will just become part of the statistics that the CDC collects on flu-like illnesses each year – and everyone ignores.

Now that I have discussed what the “New Normal” will look like and summarized the CDC guidelines for reducing your exposure to COVID-19 as the lockdown eases, let me add another guideline of my own:

  • Keep your immune system as strong as possible.

Why Is Keeping Your Immune System Strong Important?

strong immune systemIt is no secret that the media likes to focus on bad news. It is the bad news that draws people in and keeps them coming back for more.

Pandemics are no different. It doesn’t matter whether we are talking about the Spanish flu, SARS, MERS, or COVID-19. We focus on cases and deaths – the bad news. We ignore the good news – there are millions of people who were infected and had no symptoms.

However, if you have been listening closely to what the experts have been saying rather than relying on the media for your information, the good news is obvious.

  • 80-85% of people who have tested positive for COVID-19 have mild or moderate symptoms. Their symptoms are no worse than they experience with the seasonal flu.
  • Preliminary antibody tests suggest that the number of people infected with COVID-19 who experience no symptoms may be 10 to 40 times higher than reported cases.
  • The experts say that the difference is a strong immune system. They tell us that it is people with weakened immune systems that suffer and die from COVID-19.

So, how do you keep your immune system strong? Let’s start by looking at the role of supplementation.

Can Supplements Strengthen My Immune System?

MultivitaminsThose of you who follow me know that I consider supplementation as just one aspect of a holistic approach to health. However, I am starting with supplements because the question I am often asked these days is: “Can supplements protect me from COVID-19”.

As I said at the beginning of this article, that is not a question I can answer with confidence. Instead, the question you should be asking is, “Can Supplements Strengthen My Immune System?”

As I mentioned above, the experts are telling us that it is people with weakened immune systems who suffer and die from COVID-19. That means it is important to keep our immune system as strong as possible.

How do we do that? Here is what an international group of experts said in a recent review (PC Calder et al, Nutrients, 12, 1181-1200, 2020).

1) “A wealth of mechanistic and clinical data show that vitamins A, B6, B12, C, D, E, and folate; trace elements zinc, iron, selenium, magnesium, and copper; and omega-3 fatty acids EPA and DHA play important and complementary roles in supporting the immune system.”

2) “Inadequate intake and status of these nutrients are widespread, leading to a decrease in resistance to infections, and an increase in disease burden.”

They then made the following recommendations:

1) Supplementation with the above micronutrients and omega-3 fatty acids is a safe, effective, and low-cost strategy to help support optimal immune function.

    • They recommended 100% of the RDA for vitamins A, B6, B12, C, D, E, and folate and minerals zinc, iron, selenium, magnesium, and copper in addition to the consumption of a well-balanced diet.
    • They recommended 250 mg/day of EPA + DHA.

2) Supplementation above the RDA for vitamins C and D is warranted.

    • They recommend 200 mg/day of vitamin C for healthy individuals and 1-2 g/day for individuals who are sick.
    • They recommend 2000 IU/day (50 ug/day) for vitamin D.

3) Public health officials are encouraged to include nutritional strategies in their recommendations to improve public health.

Their recommendations could be met by a multivitamin that provides all the micronutrients they recommend, an omega-3 supplement, and extra vitamins C and D.

What Else Should I Do To Strengthen My Immune System?

healthy foodsAs I said above, supplementation is only one part of a holistic approach to a strong immune system. Here are the other components of a holistic approach:

1) It starts with a healthy diet.

    • Eat foods from all 5 food groups.
    • Eat plenty of fruits and vegetables. They provide antioxidants and phytonutrients that are important for our immune system.
    • Eat plenty of high fiber foods. Include whole grains and beans in addition to fruits and vegetables. That’s because the friendly gut bacteria that strengthen our immune system need a variety of fibers from different food sources to feed on.
    • Eat oily fish on a regular basis.
    • Avoid sodas, sugary foods, and highly processed foods.
    • Avoid high fat diets

2) Get adequate sleep. For most of us, that means 7-8 hours of sleep a night.

3) Maintain a healthy weight.

4) Get adequate exercise. Aim for a minimum of 150 minutes of moderate intensity exercise each week.

5) Manage stress and anxiety in healthy ways. Yes, that means if you let the news about COVID-19 cause anxiety, you are weakening your immune system. You may want to turn off the news and try prayer, meditation, yoga, or whatever relieves stress for you.

The Bottom Line

In this article, I summarized the “New Normal” we face as we emerge from lockdown and how to navigate the new normal as safely as possible. If I were to summarize this article in a few short sentences, this is what I would say:

Until we have an effective vaccine the “New Normal” is a world in which a dangerous virus is lurking in the community, waiting to strike the unprepared.

Forget all the angry rhetoric about when we should emerge from lockdown. The important question is not when we emerge. It is how we emerge.

We don’t need to stay huddled in our homes, fearful to leave, unless we are very old or very sick.

We do need to take appropriate precautions when we leave home based on the recommendations of the CDC. None of us are invincible as far as this virus is concerned. More importantly, if we bring the virus home, we may kill the very people we love the most. We need to follow the guidelines.

We should also make sure that our immune system is as strong as possible through a holistic combination of diet, supplementation, adequate sleep, exercise, weight management, and stress reduction.

For more information on CDC COVID-19 Guidelines, click here.

For more details about preparing for the new normal and diet & supplementation recommendations, read the article above.

These statements have not been evaluated by the Food and Drug Administration. This information is not intended to diagnose, treat, cure, or prevent any disease.

The Two Biggest Misconceptions About Supplementation

Secrets You Need To Know

Author: Dr. Stephen Chaney

Nutrition MythsIn last week’s “Health Tips From The Professor” I told you the truth behind the headlines that vitamins are a waste of money. This week I’m going to be talking about the two biggest misconceptions that people have about supplementation. These are two secrets you need to know.

The Two Biggest Misconceptions About Supplementation

I won’t keep you in suspense. The answer is pretty simple. The two biggest misconceptions about supplementation that I hear over and over are:

1)     Supplementation can cure disease

2)     It doesn’t matter what you eat (or what supplements you take)

Of course, those statements don’t tell you much by themselves, so let’s delve into the subject more deeply.

Misconception #1: Supplementation can cure disease.

I don’t know how many times I’ve been asked “I have “disease X”. What supplements should I take? – as if supplements were drugs that can be taken to cure a disease.

We shouldn’t think of supplements as drugs that cure diseases. We should think of them as providing the nutrients that are the building blocks of health – or perhaps the ammunition that the body uses to fight diseases. Diseases, after all, are an abnormal state of being, and our bodies have an amazing capacity to fight those diseases.

When we have infections or cancer our body activates its immune system to fight it. When we have inflammation our body tries to put out the fire. When we have damage to our DNA – our genetic information – our body tries to repair it. The list is almost endless. Our bodies are wondrously designed!

Our immune systems require nutrients like protein, B vitamins, antioxidants, zinc and iron. The omega-3 fatty acids, anti-oxidants and polyphenols like resveratrol are anti-inflammatory. Nutrients like antioxidants and polyphenols support DNA repair.

So proper diet and supplementation are not “magic bullets” that cure diseases. They are simply the building blocks that allow the body to do what it does best.

And because no two of us are alike the nutrients that we need the most to allow our bodies to do their job efficiently may be different for each one of us.

So while there is no magic food or supplement that will cure a specific disease, a healthy diet and a holistic approach to supplementation can often work wonders.

Misconception #2: It doesn’t matter what you eat.

This is the flip side of the coin. I often come across people who have been told by the “experts” that the cause of their disease was not related to diet so they shouldn’t worry about what they eat. They are also usually told that supplementation will not do any good.

Let’s take the most extreme example – genetically caused diseases or serious degenerative diseases like multiple sclerosis or Parkinson’s for which the causes are still not fully understood.

It is generally true that these diseases were not caused by poor diet (MS may be the exception because there is some evidence that it can be caused by inadequate vitamin D during childhood). And I know many people who take the “expert’s” advice to heart and eat whatever they like and consider supplementation a waste of money.

Is that a sound approach? Let’s consider.

Any nutritionist will tell you that an inadequate diet can lead to malaise, low energy, inflammation, weakened immune system and impaired wound healing – just to name a few maladies. Even if you don’t end up with the symptoms of a nutritional deficiency, a poor diet can rob you of energy and vitality.

If you layer the consequences of a poor diet on top of the underlying disease, your chances of being able to cope with the disease and function optimally are greatly diminished.

I have come across many people with very serious diseases who are able to function at a very high level through proper diet and a holistic approach to supplementation.

Diet and supplementation did not cure their disease as they quickly discover if they stop supplementing and go back to the way they used to eat, but in many cases you would consider them to be perfectly healthy as long as they keep doing what they have been doing.

The Bottom Line

1) There is no perfect food or supplement that is capable of curing disease, but if you give your body the nutrients that it needs it often has the ability to heal itself.

2) Proper diet and supplementation can make a difference even if the disease was not caused by poor nutrition.

3) Each of us have unique nutritional needs so a holistic approach to diet and supplementation is best.

I didn’t specifically talk about weight control and exercise, but you should know from my previous “Health Tips From The Professor” that I consider them to be an essential part of any holistic health program.

These statements have not been evaluated by the Food and Drug Administration. This information is not intended to diagnose, treat, cure or prevent any disease.

Health Tips From The Professor