Are Saturated Fats Good For You?

Is Everything We Thought We Knew About Fats Wrong?

Author: Dr. Stephen Chaney

fatty steakBring out the fatted calf! Headlines are proclaiming that saturated fats don’t increase your risk of heart disease – and that they may actually be good for you.

The study (Annals of Internal Medicine, 160: 398-406, 2014) that attracted all the attention in the press was what we scientists call a meta-analysis. Basically, that is a study that combines the data from many clinical trials to improve the statistical power of the effect being studied.

And it was a very large study. It included 81 clinical trials that looked at the effects of various types of fat on heart disease risk.

Are Saturated Fats Good For You?

The answer to this question is a simple No. The headlines suggesting that saturated fats might be good for you were clearly misleading. The study concluded that saturated fats might not increase the risk of heart disease, but it never said that saturated fats were good for you.

In short, the study concluded that:

  • Saturated fats, monounsaturated fats and long-chain omega-6 polyunsaturated fats did not affect heart disease risk.
  • Long chain omega-3 polyunsaturated fats decreased heart disease risk [Note: The original version of the paper said that the decrease was non-significant, which is what the headlines have reported. However, after several experts pointed out an error in their analysis of the omega-3 data, the authors corrected their analysis, and the corrected data show that the decrease in risk is significant.]
  • Trans fats increased heart disease risk

If those conclusions are correct, they would represent a major paradigm shift. We have been told for years that we should limit saturated fats and replace them with unsaturated fats. Has that advice been wrong?

Is Everything We Thought We Knew About Fats Wrong?

Before we bring out the fatted calf and start heaping butter on our12 ounce steaks, perhaps we should look at some of the limitations of this study.

We Eat Foods, Not Fats

When the authors broke the data down into the effects of individual saturated and unsaturated fatty acids on heart disease risk some interesting insights emerge.

For example, with respect to saturated fats:

  • Both palmitic acid and stearic acid – which are abundant in palm oil and animal fats – increased the risk of heart disease.
  • On the other hand, margic acid – which is more abundant in dairy products – decreased the risk of heart disease.

Whipped CreamSo while the net effect of saturated fats on heart disease risk may be zero, these data suggest:

  • It is still a good idea to avoid fatty meats, especially red meats, if you want to reduce your risk of heart disease. When you focus on foods, rather than fats this fundamental advice has not changed in over 40 years! In next week’s “Health Tips From the Professor” I will share some of the latest research on the dangers of red meat.
  • With fatty dairy foods the situation is a little more uncertain. I’m not ready to tell you to break out the butter and whipped cream just yet, but recent research does suggest that dairy foods have some beneficial effects that may outweigh their saturated fat content.

With respect to omega-3 fatty acids:

  • alpha-linolenic acid – which is found in vegetable oils and nuts and is the most abundant omega-3 fatty acids in our diets – had no effect on heart disease risk.
  • On the other hand, EPA and DHA – which are found primarily in oily fish and omega-3 supplements – decreased heart disease risk by 20-25%.

Once again, while the net effect of omega-3 fatty acids on heart disease risk was very small, that’s primarily because most Americans consume mostly alpha-linolenic acid and very little EPA and DHA. This study shows that fish oil significantly reduces heart disease risk, which is fully consistent with the heart healthy advice of the American Heart Association and National Institutes of Health over the past decade or more.

What We Replace the Fats With Is Important

A major weakness of the current study is that it did not ask what the individual clinical trials were replacing the fatty acids with. Many of them were simply replacing the saturated fats with carbohydrates. To understand why that is important, you have to go back to the research of Dr. Ancel Keys.

The whole concept of saturated fats increasing the risk of heart disease is based on the groundbreaking research of Dr. Ancel Keys in the 50’s and 60’s. But, it is important to understand what his research showed and didn’t show.

His research showed that when you replaced saturated fats with monounsaturated fats and/or polyunsaturated fats the risk of heart disease was significantly reduced. He was the very first advocate of what we now call the Mediterranean diet. (He lived to 101 and his wife lived to 97, so he must have been on to something.)

Unfortunately, his diet advice got corrupted. The mantra became low fat diets, where the saturated fat was replaced with carbohydrates – mostly simple sugars and refined flours. Since diets containing a lot of simple sugars and refined flours also increase the risk of heart disease you completely offset the benefits of getting rid of the saturated fats.

Just in case you think that is outdated dietary advice, Dr. Key’s recommendations were confirmed by a major meta-analysis published in 2009 (American Journal of Clinical Nutrition, 89: 1425-1432, 2009). That study showed once again that replacing saturated fats with carbohydrates had no effect on heart disease risk, while replacing them with polyunsaturated fats significantly reduced risk.

The Bottom Line:

You can put the fatted calf back out to pasture. The headlines telling you that saturated fats don’t increase the risk of heart disease were overstated and misleading. This study does not represent a paradigm shift. In fact, when you analyze the study in depth it simply reaffirms much of the current dietary advice about fats.

1)     When you simply replace saturated fats with carbohydrates, as did many of the studies in the meta-analysis that generated all of the headlines, there is little or no effect on heart disease risk. However, other studies have shown that when you replace the saturated fats with monounsaturated and polyunsaturated fats you significantly reduce heart disease risk.

In short, if you are interested in reducing your risk of heart disease, low fat diets may be of relatively little value while Mediterranean diets may be beneficial. No paradigm shift there. That sounds pretty familiar.

2)     Fatty meats, especially red meats, appear to increase the risk of heart disease. No surprises there.

3)     Alpha-linolenic acid, the short chain omega-3 fatty acid found in nuts, seeds and vegetable oils, does not decrease heart disease risk. However, EPA and DHA, the long chain omega-3 fatty acids found in fatty fish and fish oil supplements significantly decrease heart disease risk. That’s probably because the efficiency of conversion of alpha-linolenic acid to EPA & DHA in our bodies is only around 10%. No surprises there.

4)     The study did suggest that dairy foods may decrease heart disease risk. While there are a few other studies supporting that idea, I’m not ready to break out the butter and whipped cream yet. More research is needed.

These statements have not been evaluated by the Food and Drug Administration. This information is not intended to diagnose, treat, cure or prevent any disease.

Is Fish Oil Really Snake Oil?

Does Fish Oil Reduce Heart Disease Risk?

Author: Dr. Stephen Chaney

Fish OilOne of my readers recently sent me a video titled “Is Fish Oil Just Snake Oil?” and asked me to comment on it. The doctor who made the video claimed that the most recent studies had definitively shown that omega-3 fatty acids, whether from fish or fish oil, do not decrease the risk of heart attack, stroke or cardiovascular death. He went on to say that the case was closed. There was no point in even doing any more studies.

My reader, like many of you, was confused. Wasn’t it just a few years ago we were being told that clinical studies have shown that omega-3 fatty acids significantly reduce the risk of heart disease? Hadn’t major health organizations recommended omega-3 fatty acids as part of a heart health diet? What has changed?

The answer to the first two questions is a resounding YES, and “What has changed?” is THE story.  Let me explain.

Fish Oil And Heart Disease Risk In Healthy People

If we look at intervention studies in healthy people (what we scientists refer to as primary prevention studies) the results have been pretty uniform over the years. In a primary prevention setting, fish oil cannot be shown to significantly reduce the risk of heart disease (Rizos et al, JAMA, 308: 1024-1033, 2012).

That’s not unexpected because it is almost impossible to show that any intervention significantly reduces the risk of heart disease in healthy populations. For example, as I pointed out in recent Health Tips From the Professor (“Do Statins Really Work?” and “Can An Apple A Day Keep Statins Away?”) you can’t even show that statins significantly reduce heart attack risk in healthy populations.

If you can’t prove that statins reduce the risk of heart attacks in a healthy population, it should come as no surprise that you can’t prove that fish oil reduce heart attacks in a healthy population. To answer that question we need to look at whether fish oil reduces the risk of heart attacks in high risk populations.

Fish Oil And Heart Disease Risk In Sick People – The Early Studies

Most of the early  studies looking at the effect of fish oil in patients at high risk of cardiovascular disease (what we scientists refer to as secondary prevention studies) reported very positive results.

For example, the DART1 study (Burr et al, Lancet, 2: 757-761, 1989) and the US Physician’s Health Study (Albert et al, JAMA, 279: 23-28, 1998) reported a 29% decrease in total mortality and a 52% decrease in sudden deaths related to heart disease in patients consuming diets rich in omega-3 containing fish.

Even more striking was the GISSI-Prevenzione study (Marchioli et al, Lancet, 354: 447-455, 1999; Marchioli et al, Eur. Heart J, 21: 949-952, 2000; Marchioli et al, Circulation, 105: 1897-1903, 2002). This was a very robust and well designed study. It looked at the effect of a fish oil supplement providing 1 g/day of omega-3 fatty acids on the risk of a second heart attack in 11,323 patients who had survived a non-fatal heart attack within the last 3 months – a very high risk group.

The results were clear cut. Over the next 3.5 years supplementation with fish oil reduced overall death by 15% and sudden death due to heart disease by 30% compared to a placebo. And, if you looked at the first 4 months, when the risk of a second heart attack is highest, the fish oil supplement reduced the risk of overall death by 41% and sudden death by 53%.

The authors estimated that treating 1,000 heart attack patients with 1 g/day of fish oil would save 5.7 lives per year. That is almost identical to the 5.2 lives saved per 1,000 patients per year by the statin drug pravastatin in the LIPID trial (NEJM, 339: 1349-1357, 1998).

No wonder the American Heart Association said that patients “could consider fish oil supplementation for heart disease risk prevention.”

Fish Oil And Heart Disease Risk In Sick People – The Latest Studies

Heart Health StudyHowever, the most recent studies have been uniformly negative. For example, the ORIGIN trial (Bosch et al, NEJM, 367: 309-318, 2012) treated 12,536 patients who were considered at high risk of heart disease because of diabetes or pre-diabetes with either 1 g/day of fish oil or a placebo. This was also a robust, well designed study, and it found no effect of the fish oil supplement on either heart attacks or deaths due to heart disease.

Similarly, a recent meta-analysis looking at the combined effects of 14 randomized, double-blind, placebo-controlled trials in patients at high risk of heart disease found no significant effect of fish oil supplements on overall deaths, sudden death due to heart disease, heart attacks, congestive heart failure or stroke (Kwak et al, Arch. Int. Med., 172: 686-694, 2012).

No wonder you are confused by all of the conflicting studies. You must be wondering: “Is the American Heart Association wrong?” “Are fish oil supplements useless for reducing heart disease risk?”

What Has Changed Between The Early Studies & The Latest Studies?

When a trained scientist sees the outcome of well designed clinical studies change over time, he or she asks: “What has changed in the studies?” It turns out that a lot has changed.

1)     In the first place the criteria for people considered at risk for heart attack and stoke have changed dramatically. Not only has the definition of high cholesterol” been dramatically lowered, but cardiologists now treat people for heart disease if they have inflammation, elevated triglycerides, elevated blood pressure, diabetes, pre-diabetes or minor arrythmia.

For example, the GISSI-Prevenzione study recruited patients who had a heart attack within the past three months, while the ORIGIN study just looked at people who had diabetes or impaired blood sugar control. While both groups could be considered high risk, the patients in the earlier studies were at much higher risk for an imminent heart attack or stroke – thus making it much easier to detect a beneficial effect of omega-3 supplementation.

2)     Secondly, the standard of care for people considered at risk for heart disease has also changed dramatically. In the earlier studies patients were generally treated with one or two drugs – generally a beta-blockers and/or drug to lower blood pressure. In the more recent studies the patients generally receive at least 3 to 5 different medications – medications to lower cholesterol, lower blood pressure, lower triglycerides, reduce inflammation, reduce arrhythmia, reduce blood clotting, and medications to reduce the side effects of those medications.

Since those medications perform many of the beneficial effects of omega-3 fatty acids, it is perhaps no surprise that it is now very difficult to show any additional benefit of omega-3 fatty acids in patients on multiple medications.

The bottom line is that we are no longer asking the same question. The earlier studies were asking whether fish oil supplements reduce the risk of heart attacks or cardiovascular death in patients at high risk of heart disease. The more recent studies are asking whether fish oil supplements provide any additional benefits in a high risk population that is already on 3-5 medications to reduce their risk of heart disease.

However, the people who are writing the headlines you are reading (and the videos you are watching) are not making that distinction. They are pretending that nothing has changed in the way the studies are designed. They are telling you that the latest studies contradict the earlier studies when, in fact, they are measuring two different things.

Is Fish Oil Really Snake Oil?

Was the doctor who made the video “Is Fish Oil Just Snake Oil?” correct in saying that omega-3 fatty acids are ineffective at reducing the risk of heart disease? The answer is yes and no.

If you take the medical viewpoint that the proper way to treat anyone at the slightest risk of heart disease is with 3-5 medications – with all of their side effects, the answer seems to be pretty clear cut that adding fish oil to your regimen provides little additional benefit.

However, that is not the question that interests me. I’d like to know whether I can reduce my risk of heart attack and cardiovascular death by taking omega-3 fatty acids in place of those drugs – as the original studies have shown.

I’m sure many of my readers feel the same way.

The Bottom Line

  • Studies performed prior to 2000 have generally shown that fish oil supplements reduce the risk of a second heart attack in patients who have previously had a heart attack. One study even suggested that they were as effective as statin drugs at reducing heart attack risk in this population.
  • Recent studies have called into question the beneficial effects of fish oil supplements at reducing the risk of heart disease. However, these studies were performed with lower risk patients and the patients were on 3-5 medications to reduce their risk of heart attack or stroke.
  • The recent studies are no longer evaluating whether fish oil supplements can reduce the risk of heart disease. They are asking whether they have any additional beneficial effects for people taking multiple medications. That’s a totally different question.
  • So ignore the headlines saying that fish oil is snake oil. If you are content taking multiple medications to reduce your risk of heart disease, it is probably correct to say that omega-3 fatty acids provide little additional benefit.
  • However, if you are interested in a more holistic, drug-free approach to reducing your risk of heart disease, I still recommend omega-3 fatty acids as part of a heart healthy diet, as does the American Heart Association.

These statements have not been evaluated by the Food and Drug Administration. This information is not intended to diagnose, treat, cure or prevent any disease.

Could Omega-3s Improve Reading Skills?

Can DHA  Help Johnny Read?

Author: Dr. Stephen Chaney

Child-Reading-BookIf you are like most parents, you want to do everything you can to assure that your kids have the skills they need to succeed in school, and reading probably tops the list of necessary skills. If your child is reading below their age level, could something as simple as better nutrition improve their reading ability?

Recent studies have shown that the omega-3 fatty acids, especially DHA, play a very important role in normal brain function – especially memory, focus, concentration, and attention span.

I have shared with you previous studies which have shown that optimal DHA intake in pregnant women plays an important role in the early mental development of their children. On the other end of the age spectrum, studies have shown that optimal omega-3 fatty acid intake in older adults can delay cognitive decline.

I have also shared with you studies showing that omega-3 fatty acid supplementation in children with ADD and ADHD significantly reduce their symptoms. What about children without hyperactivity? Could omega-3 fatty acids affect their ability to learn?

Many Children Are Deficient in Omega-3 Fatty Acids

The Food and Nutrition Board has not yet set US standards for DHA intake, but the international standard is 200 mg for children 7 years old and older. Unfortunately, cod liver oil is a thing of the past, and foods rich in DHA are not particularly popular with children. Consequently, most children in this country are only getting around 20-40 mg of DHA per day.

And that shows up in their blood levels of omega-3 fatty acids. A recent study in England looked at blood levels of omega-3 fatty acids in 493 seven to nine year olds with below average reading performance who were enrolled in Oxfordshire primary schools (P. Montgomery et al, PLoS ONE, doi: 10.1371/journal.pone.0066697).

All of them had low blood levels of omega-3 fatty acids (both DHA and EPA), and the blood levels of omega-3 fatty acids were directly related to their reading ability. In non-scientific language that simply means that those with the poorest reading abilities had the lowest blood levels of omega-3 fatty acids.

This study is particularly significant because another study by the same group showing that DHA supplementation improved reading skills in underperforming children.

Could Omega-3s Improve Reading Skills?

This study (Richardson et al., PLoS ONE 7: e43909.doi:10.1371/journal.pone.0043909) looked at 362 normal 7-9 year old children enrolled in mainstream primary schools in Oxfordshire, England.

These children were all reading at significantly below the average for their grade levels. The study excluded children with specific medical difficulties that might affect their ability to read, children who were already taking medications expected to affect behavior or learning, children for whom English was not their first language, and children who were already eating fish more than twice a week or taking omega-3 supplements.

The children were given either supplements containing 600 mg of DHA per day or a placebo containing corn and soybean oil. At the end of 16 weeks the children were rescored on a standardized reading test.

Reading-ScoresThe results were quite interesting. When the scientists looked at children reading in the lower third of their class, the affect of DHA on their ability to read was non-significant. However, when they looked at the children who were performing in the bottom 20% of their class with respect to reading, DHA supplementation resulted in a 20% improvement in their reading score. And when they looked at children in the bottom 10% of their class with respect to reading, DHA supplementation resulted in a 50% increase in reading scores. These changes were highly significant.

To put this in perspective, the children performing in the bottom 20% of their class improved their reading efficiency by around 0.8 months with respect to their normal reading age, and the children in the bottom 10% of their class improved their reading efficiency by around 1.9 months with respect to their normal reading age.

Strengths and Weaknesses of The Studies

 

On The Minus Side:

  • First and foremost we must remember that nutrition is only one of many factors that can affect reading performance in children. You shouldn’t think of DHA as a magic bullet that will cure your child’s reading problems by itself.
  • This is a single pair of studies that need to be replicated.
  • This study does not establish the optimal dose of DHA needed to improve reading in underperforming children. Until dose response studies have been done we don’t know whether 600 mg is needed or whether simply making sure that the children reach the recommended 200 mg per day of DHA would be sufficient.

On The Plus Side:

  • Both of these were very well controlled studies, and they complemented each other perfectly.  One study showed that students with the poorest reading ability had the lowest blood levels of DHA. The other study showed that children with the poorest reading ability experienced the greatest improvement with DHA supplementation.
  • These studies were not done with third world children. They were studies with normal, healthy children in a prosperous European country.
  • These studies are fully consistent with previous studies looking at the effects of DHA on cognition in children.

The Bottom Line

What does this study mean for parents whose children may be struggling with their reading in school?

  • The lead author concluded: “We have shown that in the mainstream, general population, something as simple as DHA can benefit reading abilities in underperforming children.”
  • It’s perhaps not that ironclad yet. But if your kid or grandkid is reading below their grade level, DHA supplementation is both safe and inexpensive. It’s worth giving it a try.

These statements have not been evaluated by the Food and Drug Administration. This information is not intended to diagnose, treat, cure or prevent any disease.

Omega-3 Fatty Acids And Brain Health

Is it How Much You Eat, or How Much You Keep?

Author: Dr. Stephen Chaney

 

Brain HealthWhy do some studies conclude that omega-3 fatty acids are essential for a strong mind, a strong heart and will wipe out inflammation – while other studies suggest that they are ineffective? The simple answer is that nobody really knows.

However, in the process of reviewing two recent studies on omega-3 fatty acids and brain health I made an interesting observation that offers a possible explanation for the discrepancies between studies. And if my hypothesis is correct, it suggests that the design of many of the previous studies with omega-3 fatty acids is faulty.

Omega-3 Fatty Acids And Brain Health

The first study (J.K. Virtanen et al, J Am Heart Assoc, 2013, 2:e000305 doi: 10.1161/JAHA.113.000305) looked at the effect of omega-3 fatty acids on brain function in older adults (>65 years old). It concluded that high omega-3 levels were associated with better white matter grade and a 40% reduction in subclinical infarcts (Sorry for the technical jargon – but both of those are good things in terms of brain function for those of us who are getting a bit older).

The second study (C. M. Milte et al, J of Attention Disorders, 2013, doi: 10.1177/1087054713510562) looked at the effect of omega-3 fatty acids on children (ages 6-13) with ADHD. It concluded that high omega-3 levels were associated with improved spelling and attention and reduced oppositional behavior, hyperactivity, cognitive problems and inattention.

What Is The Common Thread In These Studies?

Why, you might ask, am I comparing a study in the elderly, where the concern is retention of cognitive skills, with a study on ADHD in children?

That’s because there is a very important common thread in those two studies. It wasn’t the amount of omega-3 fatty acids in their diet that counted. It was the levels of omega-3 fatty acids in their blood that made the difference.

The first study included a detailed dietary history to estimate the habitual intake of omega-3 fatty acids in the participants.

  • There was no correlation between estimated dietary intake of omega-3 fatty acids and any measure of brain function in those older adults.
  • However, there was a strong correlation between blood levels of omega-3s and brain health in that population group.

The second study was actually a placebo controlled intervention study in which the children were given 1 gm/day of either omega-3 fatty acids or omega-6 fatty acids.

  • Once again, there was no correlation between dietary intake of omega-3 or omega-6 fatty acids and any outcome related to ADHD.
  • However, there was a strong correlation between blood levels of omega-3 fatty acids or omega-3/omega-6 ratio and improvement in multiple measures of ADHD.

How Could The Effect of Dietary Intake And Blood Levels Of Omega-3s Be So Different?

Fish OilBoth studies were relatively small and suffered from some technical limitations, but the most likely explanations are:

  • Inaccurate recall of the participants as to what they eat on a habitual basis. (study 1)
  • Individual differences in the ability of participants to convert short chain omega-3 fatty acids (found in foods such as canola oil, flaxseed oil and walnuts) to the beneficial long chain fatty acids (found in cold water fish). (study 1)
  • Poor compliance in taking the supplements. (study 2)

Why Are These Studies Important?

The most important insight to come out of both of these studies is that it is essential to actually measure blood levels of omega-3 fatty acids and not just rely on dietary intake or supplementation for a valid clinical trial.

That’s a concern because blood measurements of omega-3 fatty acids are expensive and have not been a part of many of the clinical studies that have been performed to date. Even the largest, best designed clinical study is worthless if the dietary recalls aren’t accurate or people don’t take their capsules.

We need to go back and reevaluate many of the clinical studies that have been published.

We need to ask:

  • Are their conclusions valid?
  • Did some studies fail to show that omega-3s were effective simply because they only measured dietary intake and not how much of the omega-3s actually accumulated in the blood?

The Bottom Line

  • High blood levels of omega-3s in the blood correlated with improved brain health in the elderly and reduced ADHD symptoms in children
  • These studies were small, but they are consistent with a number of other studies that have come to similar conclusions.
  • Blood levels of omega-3s are better predictors than dietary intake for evaluating the health benefits of omega-3 fatty acids.
  • Many previous studies that failed to find an effect of omega-3 fatty acids on brain health, heart health or inflammation did not actually measure blood levels of the omega-3 fatty acids. These studies should be reevaluated.

These statements have not been evaluated by the Food and Drug Administration. This information is not intended to diagnose, treat, cure or prevent any disease.

Are Cholesterol Lowering Drugs Right For You?

Do Statins Really Work?

Author: Dr. Stephen Chaney

Do statins really work?Statins – those ubiquitous drugs used to lower cholesterol levels – are big business!

Over 20 million Americans are currently being treated with statin drugs at a cost that runs into billions of dollars every year. And cardiologists have just recommended that another 20 million Americans consider using cholesterol lowering drugs. 44% of the men and 22% of the women in this country are now being told that they should be using statin drugs.

Some of my cardiologist friends are so convinced that statin drugs prevent death from heart attacks that they have said, only half-joking, that we should just add statins to the water supply.

Are Cholesterol-Lowering Drugs Right For You?

Is the faith of doctors in the power of statin drugs to prevent death from heart disease justified? To answer that question in full we need to look at people who have already survived a heart attack and people who have never had a heart attack separately.

If you’ve already had a heart attack the evidence is clear cut.

  • If you have had a heart attack, there is good evidence that statins will reduce your risk of dying from a second heart attack.
  • In the technical jargon of the scientific world that is referred to as secondary prevention.

But what about those millions of Americans who are being prescribed statin drugs who have never had a heart attack? This is something we scientists refer to as primary prevention.

What Do The Studies Actually Say About Statins And Primary Prevention?

Here the evidence is not clear at all. Two major reports have cast doubt on the assumption that statins actually do prevent heart attacks in people who have not already had a first heart attack.

In the first study, Dr. Kausik Ray and colleagues from Cambridge University in England performed a meta-analyis of 11 clinical studies involving over 65,000 participants (Ray et al, Arch. Int. Med., 170: 1024-1031, 2010). They focused on those participants in the studies who had not previously had a heart attack (primary prevention).

  • They found that the use of statins over an average of 3.7 years had no statistically significant effect on mortality. In short, statins had no effect on the risk of dying from heart disease or any other cause.
  • Dr. Sreenivasa Sechasai, one of the doctors involved in the study, said “We didn’t find a significant reduction in death despite having such a huge sample size. This is the totality of evidence in primary prevention. So if we can’t show a reduction with this data, it is unlikely to be there.”

The second study was a Cochrane Systemic Review of statins published January 19th, 2011.  It stated that there was not enough scientific evidence to recommend the use of statins in people with no previous history of heart disease with some caveats (see below).

To help you understand the significance of that conclusion, let me give you a bit of background:

  • First you need to understand that the Cochrane Collaboration is an independent, non-profit organization that carefully reviews the scientific evidence behind medical treatments and proposed medical treatments.
  • Cochrane Reviews are considered the “Holy Grail” of evidence-based medicine (ie. medicine based on the best scientific evidence rather than what the pharmaceutical companies would have you believe).
  • So when a Cochrane Review concludes that there isn’t enough evidence to recommend use of statins in patients with no prior history of heart disease that is pretty big news in the medical world.

How Should These Studies Be Interpreted?

Please don’t misinterpret what I am saying. The Cochrane Review said that statin drugs are overprescribed, but it did not say that everyone who has not had a heart attack will not benefit from statins. It said that there are a number of risk factors that need to be considered in evaluating individual patients for statin use.

  • Simply put, that means that it is not as simple as saying that everyone with no previous history of heart disease should not be on statin drugs.
  • If you are currently taking statin drugs and you have no previous history of heart disease, you may want to discuss with your physician whether the Cochrane Review of statin drugs changes their opinion of whether se of those drugs is still warranted for you.
  • But the bottom line is that only your physician is trained to take into account all of the factors that increase your risk of heart disease and the best therapeutic approach for reducing your risk of heart attack.

There Is A Double Standard In The Medical Community

More importantly, these studies highlight the difficulty in showing that anything works when you start out with a healthy group of adults with no prior evidence of disease (primary prevention).

And, the way that doctors have responded to primary prevention studies shows that there is a double standard in how primary prevention trials are interpreted in the medical community. For example:

  • There is no good evidence that statins prevent fatal heart attacks in healthy people.
  • However, because statins do work in high risk patients, most doctors recommend their use by millions of Americans who have never had a heart attack.
  • There is also no good evidence that nutrients like vitamin E and omega-3 fatty acids prevent fatal heart attacks in healthy people.
  • However, there is evidence that both vitamin E and omega-3 fatty acids prevent heart attacks in high risk patients, yet most doctors will tell you they are a waste of money.

It is food for thought.

The Bottom Line

1)    Statin drugs clearly save lives when used by people who have already had a heart attack.

2)    On the other hand, there is no proof that statin drugs prevent heart attacks in people who have not previously had a heart attack

3)    Statin drugs do have side effects. Increased risk of diabetes, liver damage, muscle damage and kidney failure are the best documented, although memory loss has also been reported.

4)    I am not recommending that you stop using statin drugs without consulting your doctor. I am suggesting that you discuss the benefits and risks of statin drug use with your doctor.

5)    Perhaps the most important poin tto come out of these studies is that it almost impossible to prove the benefit of any intervention in a primary prevention trial. If you can’t prove that statins work in healthy people, it is not surprising that it is difficult to prove that other interventions work.

6)   Finally, the way that these studies have been interpreted shows that there is a clear double standard in how the medical community evaluates primary intervention trials.

  • Statin drugs don’t show any benefit in a primary prevention setting, yet most doctors still recommend them.
  • Vitamin E and omega-3 fatty acids don’t show any benefit in a primary prevention setting, and most doctors recommend against them.

These statements have not been evaluated by the Food and Drug Administration. This information is not intended to diagnose, treat, cure or prevent any disease.

Do Omega-3 Fatty Acids Decrease Risk Of Depression In Women?

Do Happy Fish Make Happy Women?

Author: Dr. Stephen Chaney

Woman playing with autumn leaves The days are getting shorter, and those shorter days can lead to depression. You may have seen the recent headlines saying “Omega-3 fatty acids may decrease the risk of depression in women”. If you suffer from seasonal depression, should you be stocking up on fish oil capsules? Let’s look at the study behind the headlines.

The Theory Behind The Study

Depression appears to be increasing in modern society. For example, between 1991 and 2002, the prevalence of major depression has more than doubled in the United States from 3.3% to 7.1%.

There are many causes of depression, but some experts blame the dramatic increase in omega-6 fatty acids in the diet.  For example, per capita consumption of soybean oil, much of it in processed foods, has increased 1000-fold during the past century. That’s a concern because omega-6 fatty acids interfere with the body’s ability to convert vegetable sources of omega-3 fatty acids into the longer chain omega-3 fatty acids thought to be effective in reducing depression.

This has lead to the hypothesis that omega-3 fatty acids in the diet may help prevent depression, and a number of clinical studies have supported that hypothesis.

How Was The Study Designed?

The study (M. A. Beydoun et al, J. Nutr., doi: 10.3945/jn.113.179119, 2013) looked at 1,746 adults age 30-64 living in Baltimore Maryland. The participants were a representative sample of African Americans and whites, men and women. Omega-3 fatty acid intake was based on two 24-hour dietary recalls. Depressive symptoms were based on something called CES-D, which is a 20 item, self-reporting symptom rating scale.

What Did The Study Actually Show?

The results were pretty dramatic for women:

  • Women with the highest intake of omega-3 fatty acids/day were 49% less likely to suffer from depression than women with the lowest intake.
  • No significant effect of omega-3 fatty acid intake on the prevalence of depression was seen for the men in this study. This was the first study to look at men and women separately, so it’s not yet clear whether this is a true sex-specific difference or simply due to the relatively small sample size and reduced incidence of depression in men.

Limitations Of The Study:

There were numerous limitations to this study, but the most important were:

  • It did not ask whether the participants were taking fish oil supplements, and it did not substantiate the dietary recalls by measuring actual levels of omega-3 fatty acids in the blood.
  • It just measured associations, not cause and effect.

The Bottom Line:

This is not a particularly strong study, but it is consistent with a least half a dozen other studies that have obtained similar results. So, based on the total body of published studies my recommendations are:

1)     If you are a woman and you’re suffering from mild depression you might want to talk with your doctor about increasing your omega-3 fatty acid intake before you start taking an anti-depressive medication. Omega-3 fatty acids may reduce heart disease risk, lower inflammation and provide other benefits. The drugs generally have side effects rather than side benefits.

2)    We don’t have any good data yet on what dose of omega-3 fatty acids are needed, but the 500-1,000 mg/day that the NIH recommends for heart health might be a good starting place.

3)     If you’re a guy, this paper suggests that the jury is out about whether omega-3s can help you with depression. More studies will be required. In the meantime, just remember that omega-3s have lots of other health benefits.

These statements have not been evaluated by the Food and Drug Administration. This information is not intended to diagnose, treat, cure or prevent any disease.

Do Omega-3 Fatty Acids Cause Prostate Cancer?

Fish, Fish Oils And Prostate Cancer

Author: Dr. Stephen Chaney

Pure Fish OilMy phone has been ringing off the hook. My email in-box is full. It seems that everyone wants to know if the headlines about omega-3 fatty acids and prostate cancer are true.

In case you have just gotten back from a vacation on some deserted island with no newspapers and no internet, let me bring you up to date. The headlines are saying things like “Fish Oils May Increase Your Risk of Prostate Cancer” and “Latest Study Links Fish Oils to Prostate Cancer”.

Once again, it seems like just when you’ve figured out which foods that are good for you, someone tells you they could actually kill you. It’s no wonder so many of you have been asking me to cut through the hype and put this latest study in perspective.

What the study actually says:

As usual, let me start with the study itself (Brasky et al., Journal of the National Cancer Institute, doi: 10.1093/jnci/djt174). On the surface, it appears to be a reasonably well designed study, and the conclusions were dramatic. They reported that subjects with high levels of omega-3 fatty acids in their blood were 43% more likely to develop prostate cancer, 44% more likely to develop low grade prostate cancer, and 71% more likely to develop high grade prostate cancer compared to those with low levels of omega-3 fatty acids in their blood.

The flaws in the study:

Case closed you might be tempted to say. However, once you dig a little deeper, the study does have two important weaknesses.

1)     It used data from another study that was designed for a totally different purpose. They went back and analyzed blood samples from a previous study that was actually designed to measure the association between vitamin E and selenium intake and prostate cancer. That’s a scientific no-no.  Let me explain why.

If they had designed a study to investigate the association between omega-3 fatty acids and prostate cancer, they probably would have selected participants with a wide range of omega-3 fatty acids in their blood at the beginning of the study. The subjects in this study actually had a very narrow range of omega-3 fatty acids in their bloodstream.

They also would probably have done a diet analysis and found out whether the subject’s omega-3 fatty acids were coming from fish or fish oil supplements. They might have even asked whether the omega-3 fatty acids were from farm-raised fish or inexpensive fish oil supplements known to be contaminated with PCBs. This study collected none of these data.

2)     This is a single study, and individual studies often provide misleading results. For example, if you examine their data closely, it looks like heavy drinkers and smokers might have a decreased risk of prostate cancer. I think that’s unlikely, but weird associations like that often pop up in individual studies.

What do you find when you look at other studies?

Expert scientists aren’t swayed by individual studies. We prefer to look at the “big picture” that emerges when you combine the results of many studies. For example, a meta-analysis of 24 studies with 461,402 subjects (Symanski et al, American Journal of Clinical Nutrition, 92: 1223-1233, 2010) found no association between fish consumption and prostate cancer risk.

Individual studies ranged from a 61% decrease in risk to a 77% increase in risk, but the overall effect was zero! Even more importantly, fish consumption decreased prostate cancer deaths by 63%.

The Bottom Line:

1)     Don’t panic. Don’t change what you are doing based on the latest sensational headlines. This study has been way overblown. We have come to expect sensational headlines and hype from journalists and bloggers because that’s how they get people to read what they write.

However, I find the comment from the senior author that “We’ve shown once again that use of nutritional supplements may be harmful” to be very irresponsible, especially since they have no data showing that anyone in their study actually used fish oil supplements.

2)     The benefits of assuring optimal omega-3 fatty acid intake clearly overshadow the risks. Omega-3 fatty acids have been shown to lower triglycerides and blood pressure, reduce inflammation and depression, and may even help prevent dementia.

3)     This study does raise a caution flag, but I would not recommend reducing your omega-3 fatty acid intake on the basis of these data alone – especially since most published studies show no increased risk of prostate cancer. There are much better designed studies underway that should clearly show an increase in prostate cancer risk if it is a real effect. I will monitor those studies closely and keep you abreast of any new developments.

These statements have not been evaluated by the Food and Drug Administration. This information is not intended to diagnose, treat, cure or prevent any disease.

Omega-3 Fatty Acid Deficiency And ADHD: Do The Effects Worsen From Generation to Generation

The Seventh Generation Revisited

Author: Dr. Stephen Chaney

Angry boy portraitDo the effects of omega-3 fatty acid deficiency on ADHD get worse from one generation to the next?

When I was a young man I read an article called “The Seventh Generation” in Organic Gardening magazine. That article was based on the old Indian admonition to consider the effects of everything we do on the seventh generation of our descendents.

The article was written before the environmental movement had co-opted the seventh generation concept. It was also written at a time when the food industry and the public had really started buying into the “better living through chemistry” concept. Processed foods, fast foods and artificial ingredients had just started to replace real foods in the American diet.

The author envisioned a world in which, if we continued to eat nutrient depleted foods, each generation would be sicker than the previous generation until by the seventh generation our descendents would live miserable, sickly, shortened lives – and nobody would know why.

That article made a powerful impression on me. I always like to keep my mind open to new ideas, especially ideas that challenge my preconceived thinking.

So I asked myself “Could it be true? Could eating nutrient depleted foods actually make each generation sicker than the previous generation?”

The author did not have the foresight to predict the obesity epidemic, so he did not envision a world in which we might live sicker, shorter lives in as little as one or two generations.

In addition the author was not a scientist, and his whole premise seemed scientifically implausible at the time. In those days we thought of DNA as the sole determinant of our genetic potential and as something that could not be influenced by our environment. Now we know the DNA and the proteins that coat the DNA can be influenced by the foods we eat and other environmental factors – and that those changes can be passed down from generation to generation. This has lead to a whole new scientific discipline called epigenetics.

Could it be true?

All of that leads me to this week’s article (Bondi et al, Biological Psychiatry, doi:10.1016/j.biosych.2013.06.007). Let me start by pointing out that this is an animal study. It was done with rats. I usually base my health tips on human clinical trials, but it is simply not possible to do multi-generation studies in humans.

The authors hypothesized that omega-3 fatty acid deficiency could be associated with psychiatric disorders such as ADHD, autism, schizophrenia and depression. They based this hypothesis on the known role of omega-3 fatty acids in both brain development and maintenance of normal brain function. They also pointed to numerous clinical studies showing that omega-3 fatty acids could either prevent or reduce the severity of these diseases in humans.

They focused on adolescent rats as well as adult rats because these diseases frequently emerge, and are sometimes more severe, during the adolescent years in humans. Finally, they included second generation rats in the study because the change in our food supply that created an excess of omega-6 fatty acids and a deficiency of omega-3 fatty acids started in the 1960s and 1970s. They reasoned that if the effect of omega-3 deficiency is multigenerational it would be more severe in today’s human adolescents. As I said before, you can’t do multigenerational studies in humans, but you can do them in rats.

They separated litters of rat pups from omega-3 sufficient parents into two groups. One group was fed a diet sufficient in omega-3 fatty acids, and the second group was fed an identical diet except that it was deficient in omega-3 fatty acids. When the omega-3 sufficient group reached adulthood, they were mated and their offspring were continued on the same omega-3 sufficient diet. Similarly, when the omega-3 deficient group reached adulthood, they were mated and their offspring were raised on the same omega-3 deficient diet.

They put each group of rats through a series of behavioral tests when they were adolescents and again when they were adults. It is beyond my expertise to analyze the validity of rat behavioral assays, but the authors claim that the tests they employed were good measures of behavioral traits in human that would be classified as hyperactivity, anxiety, attention deficit disorder and reduced behavioral flexibility. [If you have adolescents in your household, some of those behaviors may sound awfully familiar].

The results were thought provoking. They found little evidence that omega-3 fatty acid deficiency triggered these behaviors in the first generation rats. However, they found strong evidence that omega-3 fatty acid deficiency triggered each of those behaviors in the second generation rats – and the effect was much stronger in the adolescent rats than in the adult rats.

The Bottom Line

At the present time, it isn’t possible to predict the significance of this study for you. This is a single study. And, it is an animal study. It could mean nothing, or it could mean everything.

We do know that the incidence of ADHD in US children has increased by 38% from 2003 to 2012 – and nobody really knows why. We also know that some studies have shown that the American diet is often deficient in omega-3 fatty acids. These same studies have suggested that providing adequate amounts of omega-3 fatty acids in the diet may prevent or reduce the symptoms of ADHD.

I’m a hard-nosed scientist. So I’m not going to be one of those bloggers who writes sensational headlines claiming that omega-3 fatty acid deficiency, or some other nutritional factor, is the cause of our skyrocketing rates of ADHD.

But, it is enough to make you wonder “What if? Could it be true?”

These statements have not been evaluated by the Food and Drug Administration. This information is not intended to diagnose, treat, cure or prevent any disease.

Health Tips From The Professor