500th Issue Celebration

Nutrition Breakthroughs Over The Last Two Years

Author: Dr. Stephen Chaney 

celebrationIn the nearly ten years that I have been publishing “Health Tips From The Professor”, I have tried to go behind the headlines to provide you with accurate, unbiased health information that you can trust and apply to your everyday life.

The 500th issue of any publication is a major cause for celebration and reflection – and “Health Tips From The Professor” is no different.

I am dedicating this issue to reviewing some of the major stories I have covered in the past 100 issues. There are lots of topics I could have covered, but I have chosen to focus on three types of articles:

  • Articles that have debunked long-standing myths about nutrition and health.
  • Articles that have corrected some of the misinformation that seems to show up on the internet on an almost daily basis.
  • Articles about the issues that most directly affect your health.

Best Ways To Lose Weight

weight lossSince it is almost January, let’s start with a couple of articles about diet and weight loss (or weight gain). I have covered the effectiveness of the Paleo, Keto, Mediterranean, DASH, vegetarian, and Vegan diets for both short and long-term weight loss in my book Slaying The Food Myths, so I won’t repeat that information here. Instead, I will share a few updates from the past 100 issues.

My Tips On The Best Approach For Losing Weight: Every health guru has a favorite diet they like to promote. I am different. My book, Slaying the Food Myths, is probably the first “anti-diet” diet book ever written. Based on my years of research I can tell you that we are all different. There is no single diet that is best for everyone. In this article I have summarized my tips for selecting the weight loss diet that is best for you.

The US News & World Report’s Recommendation For the Best Diets: Each year US News & World Report assembles some of the top nutrition experts in the country and asks them to review popular diets and rank them for effectiveness and safety. In this article I summarize their ratings for 2022.

Does Intermittent Fasting Have A Downside? In previous articles in “Health Tips From the Professor” I have reported on studies showing that intermittent fasting is no more effective for weight loss than any other diet that restricts calories to the same extent. But does intermittent fasting have a downside? In this article I reported on a study that suggests it does.

Can A Healthy Diet Help You Lose Weight? Most investigators simply compare their favorite diet to the standard American diet. And any diet looks good compared to the standard American diet. In this article I reported on a study that compared two whole food diets that restricted calories by 25% to the standard American diet. One calorie-restricted diet was more plant-based and the other more meat-based. You may be surprised at the results.

Omega-3s

Omega-3s continue to be an active area of research. Here are just a few of the top studies over the past two years.omega3s

Do Omega-3s Oil Your Joints? In this article I reviewed the latest information on omega-3s and arthritis.

Do Omega-3s Add Years To Your Life? In this article I discussed a study that looks at the effect of omega-3s on longevity.

The Omega-3 Pendulum: In this article I discuss why omega-3 studies are so confusing. One day the headlines say they are miracle cures. A few weeks later the headlines say they are worthless. I discuss the flaws in many omega-3 studies and how to identify the high-quality omega-3 studies you can believe.

Do Omega-3s Reduce Congestive Heart Failure? In this article I review a recent study on omega-3s and congestive heart failure and discuss who is most likely to benefit from omega-3 supplementation.

Plant-Based Diets

Vegan FoodsWill Plant-Based Proteins Help You Live Longer? In this article  I review a study that looks at the effect of swapping plant proteins for animal proteins on longevity.

Can Diet Add Years To Your Life? In this article  I review a study that takes a broader view and asks which foods add years to your life.

Is A Vegan Diet The Secret To Weight Loss? This is an update of my previous articles on vegan diets. This article asked whether simply changing from a typical American diet to a vegan diet could influence weight loss and health parameters in as little as 16 weeks. The answer may surprise you.

Is A Vegan Diet Bad For Your Bones? No diet is perfect. This article looks at one of the possible downsides to a vegan diet. I also discuss how you can follow a vegan diet AND have strong bones. It’s not that difficult.

Anti-Inflammatory Diets

What Is An Anti-Inflammatory Diet? In this article  I discuss the science behind anti-inflammatory diets Inflammationand what an anti-inflammatory diet looks like.

Can Diet Cause You To Lose Your Mind? In this article  I discuss a study looking at the effect of an inflammatory diet on dementia. The study also looks at which foods protect your mind and which ones attack your mind.

Do Whole Grains Reduce Inflammation? You have been told that grains cause inflammation. Refined grains might, but this study shows that whole grains reduce inflammation.

Nutrition And Pregnancy

pregnant women taking vitaminsHere are the latest advances in nutrition for a healthy pregnancy.

The Perils Of Iodine Deficiency For Women. In this article I reviewed the latest data showing that iodine is essential for a healthy pregnancy and discuss where you can get the iodine you need.

Do Omega-3s Reduce The Risk Of Pre-Term Births? You seldom hear experts saying that the data are so definitive that no further studies are needed. In this article I reviewed a study that said just that about omega-3s and pre-term births.

Does Maternal Vitamin D Affect ADHD? In this article I reviewed the evidence that adequate vitamin D status during pregnancy may reduce the risk of ADHD in the offspring.

How Much DHA Should You Take During Pregnancy? In this article I reviewed current guidelines for DHA intake during pregnancy and a recent study suggesting even higher levels might be optimal.

Is Your Prenatal Supplement Adequate? In this article I reviewed two studies that found most prenatal supplements on the market are not adequate for pregnant women or their unborn babies.

Children’s Nutrition

Here are the latest insights into children’s nutrition.Obese Child

Are We Killing Our Children With Kindness? In this article I reviewed a recent study documenting the increase in ultra-processed food consumption by American children and the effect it is having on their health. I then ask, is it really kindness when we let our children eat all the sugar and ultra-processed food they want?

Is Diabetes Increasing In Our Children? In this article I reviewed a study documenting the dramatic increase in diabetes among American children and its relationship to ultra-processed food consumption and lack of exercise.

How Much Omega-3s Do Children Need? In this article I reviewed an study that attempts to define how much omega-3s are optimal for cognition (ability to learn) in our children.

Diabetes

diabetesHere are some insights into nutrition and diabetes that may cause you to rethink your diet.

Does An Apple A Day Keep Diabetes Away? You may have been told to avoid fruits if you are diabetic. In this article I reviewed a study showing that fruit consumption actually decreases your risk of diabetes. Of course, we are all different. If you have diabetes you need to figure out which fruits are your friends and which are your foes.

Do Whole Grains Keep Diabetes Away? You may have also been told to avoid grains if you are diabetic. In this article I reviewed a study showing that whole grain consumption actually decreases your risk of diabetes. Once again, we are all different. If you have diabetes you need to figure out which grains are your friends and which are your foes.

Heart Disease

Here is an interesting insight into nutrition and heart disease that may cause you to rethink your diet.

Is Dairy Bad For Your Heart? You have been told that dairy is bad for your heart AND that it is good for your heart. Which is correct? In this article I discuss some recent studies on the topic and conclude the answer is, “It depends”. It depends on your overall diet, your weight, your lifestyle, and your overall health.

Breast Cancer

Here are some facts about breast cancer every woman should know.breast cancer

The Best Way To Reduce Your Risk Of Breast Cancer In this article I review two major studies and the American Cancer Guidelines to give you 6 tips for reducing your risk of breast cancer.

The Truth About Soy And Breast Cancer You have been told that soy causes breast cancer, and you should avoid it. In this article I review the science and tell you the truth about soy and breast cancer.

Supplementation

Vitamin SupplementsSome “experts” claim everyone should take almost every supplement on the market. Others claim supplementation is worthless. What is the truth about supplementation?

What Do The 2020-2025 Dietary Guidelines Say About Supplements? Every 5 years the USDA updates their Dietary Guidelines for foods and supplements. In this article I discuss what the 2020-2025 Dietary Guidelines say about supplements. Yes, the USDA does recommend supplements for some people.

Who Benefits Most From Supplementation? Not everyone benefits equally from supplementation. In this article I discuss who benefits the most from supplementation.

Should Cancer Patients Take Supplements? Doctors routinely tell their cancer patients not to take supplements. Is that the best advice? In this article I review a study that answers that question.

Can You Trust Supplements Marketed on Amazon? Amazon’s business model is to sell products at the lowest possible price. But do they check the quality of the products marketed on their site? In this article  I review a study that answers that question.

Is Your Prenatal Supplement Adequate? In this article I reviewed two studies that found most prenatal supplements on the market are not adequate for pregnant women or their unborn babies.

The Bottom Line 

I have just touched on a few of my most popular articles above. You may want to scroll through these articles to find ones of interest to you that you might have missed over the last two years. If you don’t see topics that you are looking for, just go to https://chaneyhealth.com/healthtips/ and type the appropriate term in the search box.

In the coming years, you can look for more articles debunking myths, exposing lies and providing balance to the debate about the health topics that affect you directly. As always, I pledge to provide you with scientifically accurate, balanced information that you can trust. I will continue to do my best to present this information in a clear and concise manner so that you can understand it and apply it to your life.

Final Comment: You may wish to share the valuable resources in this article with others. If you do, then copy the link at the top and bottom of this page into your email. If you just forward this email and the recipient unsubscribes, it will unsubscribe you as well.

These statements have not been evaluated by the Food and Drug Administration. This information is not intended to diagnose, treat, cure, or prevent any disease.

 

Does Magnesium Protect Your Heart?

Do You Need A Magnesium Supplement?

Author: Dr. Stephen Chaney 

Getting an adequate amount magnesium from our diet should not be a problem. Magnesium is found in a wide variety of foods with the best sources being legumes (beans), nuts, seeds, whole grains, green leafy vegetables, and dairy foods.

The problem is:

  • None of these foods contain enough magnesium by themselves to provide the RDA (420 mg/day for men and 320 mg/day for women) for magnesium. We need to consume a variety of these foods every day – something most Americans aren’t doing.
  • These foods are decent sources of magnesium only in their unprocessed form. And most Americans consume more highly processed foods than whole, unprocessed foods.
  • Two to three servings of dairy provide a decent amount of magnesium, but many Americans are cutting back on dairy. And plant-based dairy substitutes often provide much less magnesium than the dairy food they replace.
  • Finally, green leafy vegetables (iceberg lettuce doesn’t count) don’t make it into the American menu as often as they should.

As a result, recent studies find that at least 50% of Americans are not getting enough magnesium in their diet. In fact, the average magnesium intake in this country is 268 mg/day for men and 234 mg/day for women. And the figures are not very different in other developed countries.

Does it matter? Recent studies have shown that an adequate intake of dietary magnesium is associated with lower risks of cardiovascular diseases (CVD) and all-cause mortality. This may be because of the of role of magnesium in supporting heart muscle contraction, normal heart rhythm, and blood pressure regulation. Adequate magnesium intake is also associated with lower risk of type 2 diabetes.

But what if you have already had a heart attack? Is it too late for magnesium to make a difference? A recent study (I Evers et al, Frontiers in Cardiovascular Medicine, August 12, 2022) was designed to answer this question.

The authors examined the effect of magnesium intake on cardiovascular disease (CVD) mortality, all-cause mortality, and coronary heart disease (CHD) mortality in patients who had experienced a recent heart attack.

[Note: CHD is defined as heart disease due to clogged coronary arteries, such as a heart attack. CVD includes CHD plus diseases caused by other clogged blood vessels, such as strokes and peripheral artery disease].

How Was The Study Done?

clinical studyThe authors used data from a previous study that had enrolled 4,365 Dutch patients aged 60-80 (average age = 69) who had experienced a heart attack within approximately 4 years prior to enrollment and followed them for an average of 12.4 years. All patients were receiving standard post-heart attack drug therapy.

The characteristics of the patients enrolled in the study were as follows:

  • Male 79%, female 21%
  • Average magnesium intake = 302 mg/day
  • Percent magnesium deficient: 72% of men and 67% of women
  • Percent taking magnesium supplements = 5.4%
  • Percent on drugs to lower blood pressure = 90%
  • Percent on statins = 86%
  • Percent on diuretics = 24%

Upon entry into the study the patients were asked to fill out a 203-item food frequency questionnaire reflecting their dietary intake over the past month. Trained dietitians reviewed the questionnaires and phoned the participants to clarify any unclear or missing items. The questionnaires were linked to the 2006 Dutch Food Composition Database to calculate magnesium intake and other aspects of their diets.

The patients were divided into 3 groups based on their energy adjusted magnesium intakes and those in the highest third (>322 mg/day) were compared to those in the lowest third (<238 mg/day) with respect to cardiovascular disease (CVD), all-cause mortality, and coronary heart disease (CHD) mortality.

The comparisons were statically adjusted for fiber intake (most magnesium-rich foods are also high fiber foods), diuretic use (diuretics reduce magnesium levels in the blood), age, sex, smoking, alcohol use, physical activity, obesity, education level, caloric intake, calcium, vitamin D, sodium from foods, potassium, heme iron, vitamin C, beta-carotenoids, polyunsaturated fatty acids, saturated fatty acids, overall diet quality based on the Dutch Dietary Guidelines, systolic blood pressure, kidney function, and diabetes. In other words, the data were adjusted for every conceivable variable that could have influenced the outcome.

Does Magnesium Protect Your Heart?

When those with the highest magnesium intake (>322 mg/day) were compared to those with the lowest intake (<283 mg/day):

  • Cardiovascular disease (CVD) mortality was reduced by 28%.
  • All-cause mortality was reduced by 22%.
  • Coronary heart disease (CHD) mortality was reduced by 16%, but that reduction was not statistically significant.

They then looked at the effect of some variables that might affect CVD risk on the results.

  • Diabetes, kidney function, iron intake, smoking, alcohol use, blood pressure, most dietary components and overall diet quality had no effect on the results.
  • The results were also not affected when patients using a magnesium supplement were excluded from the analysis. This suggests the effect of magnesium from diet and supplementation is similar.
  • However, diuretic use had a significant effect on the results.
    • For patients using diuretics, high magnesium intake versus low magnesium intake reduced CVD mortality by 45%.

How Much Magnesium Do You Need?

Question MarkYou may have noticed that the difference between the highest magnesium intake group and the lowest intake group was, on average, only 39 mg/day. So, the authors also used a statistical approach that utilized data from each individual patient to produce a graph of magnesium intake versus risk of CVD, total, and CHD mortality. For all 3 end points the graphs showed an inverse, linear relationship between magnesium and mortality.

From this, the authors were able to calculate the effect of each 100mg/day increase in magnesium intake on mortality risk. Each 100mg/day of added magnesium reduced the risk of:

  • CVD mortality by 38%.
  • All-cause mortality by 30%.
  • CHD mortality by 33%, and these results were borderline significant.

The inverse relationship between magnesium intake was observed at intakes ranging from around 200 mg/day to around 450 mg/day, which represented the range of dietary magnesium intake in this Dutch population group.

This study did not define an upper limit to the beneficial effect of magnesium intake because the graphs had not plateaued at 450 mg/day, suggesting that higher magnesium intakes might give even better results.

The authors concluded, “We observed a strong, linear inverse association of dietary magnesium with CVD and all-cause mortality after a heart attack, which was most pronounced in patients who used diuretics. Our findings emphasize the importance of an adequate magnesium intake in CVD patients, on top of cardiovascular drug treatment.”

I might add that this is the first study to look at the effect of magnesium on long-term survival after a heart attack.

Do You Need A Magnesium Supplement? 

magnesium supplements benefitsAs I said earlier, the best dietary sources of magnesium are beans, nuts, seeds, whole grains, green leafy vegetables, and dairy foods. And:

  • None of these foods contain enough magnesium by themselves to provide the RDA (420 mg/day for men and 320 mg/day for women) for magnesium.
  • These foods are decent sources of magnesium only in their unprocessed form.

When unprocessed, each of these foods provides 20 to 60 mg of magnesium per serving. If we use an average value of 40 mg/serving, you would need in the range of 8-10 servings/day of these foods in their unprocessed form to meet the RDA for magnesium.

You could get a more accurate estimate of the magnesium content of your diet using the “Magnesium Content of Selected Foods” table from the NIH Factsheet on Magnesium.

Now you are ready to ask yourself two questions:

  1. Does my current diet provide the RDA for magnesium?

2. If not, am I willing to make the dietary changes needed to increase my magnesium levels to RDA levels?

If your answer to both questions is no, you should probably consider a magnesium supplement. A supplement providing around 200 mg of magnesium should bring all but the worst diets up to the recommended magnesium intake.

The current study did not define an upper limit for the beneficial effect of magnesium on survival after a heart attack but suggested that intakes above 450 mg/day might be optimal.

I do not recommend megadoses of magnesium, but intakes from diet and supplementation that slightly exceed the RDA appear to be safe. In their Magnesium Factsheet, the NIH states, “Too much magnesium…does not pose a health risk in healthy individuals because the kidneys eliminate excess amounts in the urine.”

The only concern is that magnesium from supplements is absorbed much more rapidly than magnesium from foods, and this can cause gas, bloating, and diarrhea in some individuals. For this reason, I recommend a sustained release magnesium supplement, so the magnesium is absorbed more slowly.

Finally, we should not consider magnesium as a magic bullet. The current study statistically eliminated every known variable that might affect survival after a heart attack, so it could estimate the beneficial effects of magnesium alone.

However, survival after a heart attack will likely be much greater if diet, exercise, and body mass are also optimized.

The Bottom Line 

Recent studies have shown that an adequate intake of dietary magnesium is associated with lower risks of cardiovascular diseases (CVD) and all-cause mortality.

But what if you have already had a heart attack? Is it too late for magnesium to make a difference? A recent study of heart attack patients in Holland was designed to answer this question.

The authors examined the effect of magnesium intake on cardiovascular disease (CVD) mortality, all-cause mortality, and coronary heart disease (CHD) mortality in patients who had experienced a recent heart attack.

When heart attack patients with the highest magnesium intake (>322 mg/day) were compared to those with the lowest intake (<283 mg/day):

  • Cardiovascular disease (CVD) mortality was reduced by 28%.
  • All-cause mortality was reduced by 22%.
  • Coronary heart disease (CHD) mortality was reduced by 16%, but that reduction was not statistically significant.

The authors went on to look at the inverse linear relationship between magnesium intake and mortality risk. They found that each 100mg/day of added magnesium reduced the risk of:

  • CVD mortality by 38%.
  • All-cause mortality by 30%.
  • CHD mortality by 33%, and these results were borderline significant.

The authors concluded, “We observed a strong, linear inverse association of dietary magnesium with CVD and all-cause mortality after a heart attack…Our findings emphasize the importance of an adequate magnesium intake in CVD patients…”

I might add that this is the first study to look at the effect of magnesium on long-term survival of patients who have suffered a heart attack.

For more details on this study and my discussion of whether you might benefit from a magnesium supplement, read the article above.

These statements have not been evaluated by the Food and Drug Administration. This information is not intended to diagnose, treat, cure, or prevent any disease.

Do Whole Grains Reduce Inflammation?

Are Low Carb Diets Healthy Long Term?

Author: Dr. Stephen Chaney 

InflammationInflammation is a bit like Dr. Jekyll and Mr. Hyde. Acute inflammation plays a valuable role in our immune response. But chronic inflammation is a scourge. Chronic inflammation:

  • Is a key component of all the “itis” diseases.
  • Can lead to autoimmune diseases.
  • Is thought to play an important role in heart disease.
  • Is associated with many other diseases, such as diabetes, cancer, Alzheimer’s disease, and inflammatory bowel diseases (IBS).

While there are many causes of chronic inflammation, diet plays an important role. In a previous issue of “Health Tips From the Professor” I have described how an anti-inflammatory diet can quell the fires of chronic inflammation.

Fiber from unprocessed plant foods is a key component of an anti-inflammatory diet. But are all plant fibers equally effective at reducing inflammation? Here is what we know:

  • Fiber from whole grains, vegetables, and fruits have different chemical and physical characteristics and support the growth of different species of friendly bacteria in our intestines.
  • Previous studies have shown that higher intakes of dietary fiber are associated with lower risk of heart disease.
    • Studies have suggested that fiber from whole grains may be more effective than fiber from fruits and vegetables at reducing heart disease risk.
  • Chronic inflammation is highly associated with the development of heart disease. This has led to the hypothesis that fiber from whole grains may be more effective than other plant fibers at reducing chronic inflammation.
    • Some studies have supported this hypothesis, but they have all been done with middle-aged participants, not with elderly participants who characteristically have higher levels of inflammation.

The study (R Shivakoti et al, JAMA Network Open, 5(3): e225012, 2022) I will describe today was designed to:

  • Test the hypothesis that whole grain fiber is more effective than vegetable or fruit fiber at reducing inflammation.
  • Determine how important reducing inflammation is at reducing the risk of heart disease.
  • Extending these findings to an older population group.

How Was The Study Done?

Clinical StudyThe data for this study was obtained from the Cardiovascular Health Study (CHS), a study designed to characterize factors influencing cardiovascular health in American adults aged 65 years or older. This study analyzed data from 4,125 participants (40% men, 95% white) who enrolled in the CHS study from 1989 to 1990.

These participants did not have heart disease at the time they were enrolled in the study. They had an average age of 72.6 at the beginning of the study and were followed for an average of 11.9 years. During that time 1,941 (47%) of them developed heart disease.

When the participants were enrolled in the study:

  • A food frequency questionnaire was administered to them by a trained dietitian to assess their long-term usual dietary intake. This information was used to assess:
    • Their total fiber intake and…
    • Their fiber intake from various dietary sources (whole grains, vegetables, and fruits).
  • Fasting blood samples were collected and used to analyze various markers of inflammation.

A follow-up via phone was conducted every 6 months to track an initial diagnosis of cardiovascular disease.

At the end of the study, the investigators analyzed:

  • The effect of total fiber and fiber from different food sources on the risk of developing heart disease.
  • The effect of total fiber and fiber from different food sources on inflammatory markers in the blood.
  • The extent to which decreased inflammation could explain the effect of whole grain fiber on reducing heart disease.

Do Whole Grains Reduce Inflammation?

With respect to inflammation:

  • Increased intake of total fiber was associated with healthier levels of the inflammatory markers CRP, IL-1RA, and sCD163.
    • Increased intake of fiber from whole grains was associated with healthier levels of the inflammatory markers CRP, IL-6, and IL-1RA.
    • Increased intake of vegetable fiber was not significantly associated with healthier levels of any inflammatory marker.
    • Increased intake of fiber from fruits was associated with healthier levels of the inflammatory marker sCD163.

With respect to cardiovascular disease:

  • Every 5g/day increase in total fiber decreased the risk of heart disease by 5%.
    • Every 5g/day increase in fiber from whole grains decreased the risk of heart disease by 14%.
    • Increased intake of fiber from vegetables and fruits did not have a statistically significant effect on the risk of heart disease.

Finally, when the investigators did a statistical analysis to determine to extent to which the effect of whole grain fiber on inflammation, could explain its effect on heart disease, they concluded:

  • The effect of whole grain fiber on inflammation could explain only about 16% of its effect on heart disease.

In the words of the authors, “In this prospective study of older adults, higher intakes of total fiber were associated with lower levels of various inflammatory markers, and this inverse association was primarily due to cereal fiber intake. Vegetable and fruit fiber intakes were not consistently associated with lower levels of inflammatory markers. These results suggest that specifically cereal fibers might be more effective in reducing systemic infection, which will need to be tested in interventional studies of specific populations.

In addition, cereal fiber was associated with a lower risk of CVD, although inflammation mediated less than 20% of the observed inverse association between cereal fiber and CVD. This suggests that the association of cereal fiber is primarily due to factors … other than systemic inflammation.”

Note: This conclusion underplays the role of fruit fiber in reducing inflammation. The statement is correct in saying only whole grain fiber reduces the inflammatory markers CRP, IL-6, and IL-1RA. However, both total fiber and fruit fiber increase the anti-inflammatory marker sCD163. That is why I chose to use the term “healthier levels” rather than lower or higher levels when describing the effects of whole grain and fruit fibers on markers of inflammation.

What Does This Study Mean For You?

confusion#1: The biggest takeaway from this study is that whole grains are good for you.

  • This study shows that whole grain fiber decreases our risk of developing heart disease.
    • This is fully consistent with multiple previous studies showing that whole grains decrease the risk of heart disease.
    • Previous studies have also shown that whole grains reduce the risk of cancer and diabetes.
  • This study also suggests that whole grain fiber reduces chronic inflammation.

There are also some takeaways from this and previous studies that may not be so obvious.

#2: Fiber has many important benefits beyond its effect on inflammation. For example:

  • This study concluded that the reduction in inflammation only explained a small part of the beneficial effect of whole grain fiber on reducing heart disease risk.
  • That is because whole grain fiber also:
    • Feeds friendly bacteria that improve gut function.
    • Provides satiety that can result in reduced fat and calorie intake.
    • Binds cholesterol, which improves blood cholesterol level.
    • Slows the rate at which dietary sugar enters the bloodstream, which improves blood sugar control.

#3: Whole plant foods have many benefits beyond their fiber content.

  • This study concluded that whole grain fiber was more beneficial than fiber from fruits and vegetables at reducing inflammation and reducing the risk of heart disease.
  • Previous studies have also shown that fruit and vegetables significantly decrease the risk of heart disease, stroke, and cancer.
  • That is because whole grains and unprocessed fruits and vegetables:
    • Displace sugar, refined flour, and highly processed foods from the diet.
    • Have a lower caloric density than processed foods, making it easier to achieve a healthy weight.
    • Provide nutrients and phytonutrients not found in processed foods.
    • Support a wide variety of healthy gut bacteria.

Are Low Carb Diets Healthy Long Term?

low carb dietconfusionWhen you consider all the benefits of whole grains, fresh fruits, and vegetables, it brings us to the final take home message.

#4: Despite what Dr. Strangelove has told you, low-carb diets may not be healthy long term.

  • There are no long-term (10 or 20-year) studies of low-carb diets. We simply have no evidence to support the claim that they are healthy long term.
  • Most low-carb diets eliminate or severely limit fruits and whole grains. Considering the many health benefits they provide, it is unlikely that any diet that restricts them is healthy long term.

The Bottom Line 

A recent study looked at the effect of plant fiber on inflammation and on heart disease.

With respect to inflammation the study found:

  • Increased intake of total fiber was associated with healthier levels of the inflammatory markers CRP, IL-1RA, and sCD163.
    • Increased intake of fiber from whole grains was associated with healthier levels of the inflammatory markers CRP, IL-6, and IL-1RA.
    • Increased intake of vegetable fiber was not significantly associated with healthier levels of any inflammatory marker.
    • Increased intake of fiber from fruits was associated with healthier levels of the inflammatory marker sCD163.

With respect to cardiovascular disease:

  • Every 5g/day increase in total fiber decreased the risk of heart disease by 5%.
  • Every 5g/day increase in fiber from whole grains decreased the risk of heart disease by 14%.
    1. The biggest takeaway from this study is that whole grains are good for you.

 Other takeaways from this and previous studies are:

2) Fiber has many important benefits beyond its effect on inflammation.

3) Whole plant foods have many benefits beyond their fiber content.

4) Despite what Dr. Strangelove has told you, low-carb diets may not be healthy long term.

For more details on this study and what it means for you, read the article above.

These statements have not been evaluated by the Food and Drug Administration. This information is not intended to diagnose, treat, cure or prevent any disease.

Do Calcium Supplements Increase Deaths From Heart Valve Disease?

What Did This Study Get Wrong?

Author: Dr. Stephen Chaney

Aortic Stenosis“Killer calcium” is back. Once again, we are seeing headlines saying that calcium supplementation increases our risk of dying from heart disease. If you have seen these headlines, you are probably confused.

After all, there have been three major clinical studies looking at the effect of calcium supplementation on heart disease risk. These studies followed close to 100,000 Americans for 10-20 years. And none of the studies found any increase in the risk of developing or dying from heart disease for people taking calcium supplements. For more information on this topic, see an article from “Health Tips From the Professor”.

You are probably wondering, “What is going on? I thought this issue was settled”.

In the first place, this study did not look at heart disease in general, but on a very specific form of heart valve disease called aortic stenosis. Aortic stenosis is a narrowing of the heart valve leading to the aorta. And it is often associated with calcification of the heart valve.

The cause of aortic stenosis is complex, but it is associated with:

  • Chronic inflammation.
  • High cholesterol levels.
  • Tobacco use.
  • Dysregulation of calcium metabolism caused by things like elevated parathyroid levels and end-stage kidney disease.
  • Elevated blood levels of calcium and/or vitamin D.

Because of the role of calcium and vitamin D in aortic stenosis, the current study (N Kassis et al, Heart, Epub ahead of print, 1-9, 2022) was designed to ask whether calcium and vitamin D supplementation influenced the risk of dying from aortic stenosis.

How Was This Study Done?

Heart Disease StudyThe Cleveland Clinic scanned their Echocardiography Database for patients aged 60 years or more who had been diagnosed with mild to moderate aortic stenosis. 2,657 patients met these criteria (average age = 74, 58% men) and were followed for an average of 59 months in their database.

In terms of calcium and vitamin D supplementation:

  • 49% did not supplement.
  • 12.5% supplemented with vitamin D (dose not defined).
  • 38.5% supplemented with calcium (500 – 2,000 mg/day) ± vitamin D.

The study looked at the correlation between vitamin D supplementation and calcium supplementation with:

  • Aortic valve replacement surgery.
  • All-cause mortality* with and without aortic valve replacement surgery.
  • Cardiovascular mortality* with and without aortic valve replacement surgery.

*Note: Since all the patients had aortic stenosis at the beginning of the study, both all-cause and cardiovascular mortality were primarily due to aortic stenosis.

Do Calcium Supplements Increase Deaths From Heart Valve Disease?

Before I describe the results of the study, there are two things you need to know:

  • Vitamin D supplementation did not have a significant effect on any outcome studied, so I will not mention vitamin D in the rest of this article.
  • In the calcium supplementing group, there were only a few people taking calcium supplements without vitamin D. However, their outcomes were the same as for people taking calcium + vitamin D supplements. Therefore, the authors discussed their results in terms of calcium supplementation, not calcium + vitamin D supplementation. I will do the same.

With those two things in mind, here is what the study found.

With respect to the need for aortic valve replacement surgery:

  • Calcium supplementation increased the need for surgery by 50%.

With respect to all-cause mortality:

  • Calcium supplementation increased the risk of death by 31%. When you divided the results into patients who did and did not have aortic valve replacement surgery within the 59-month follow-up of this study:
    • Those who received aortic valve replacement surgery did not have a statistically significant increase in risk of death.
    • Those who did not receive aortic valve replacement surgery had a 38% increased risk of death.

With respect to cardiovascular mortality:

  • Calcium supplementation doubled the risk of death. When you divided the results into patients who did and did not have aortic valve replacement surgery within the 59-month follow-up of this study:
    • Those who received aortic valve replacement surgery did not have a statistically significant increase in risk of death.
    • Those who did not receive aortic valve replacement surgery had a 205% increased risk of death.

The authors concluded, “Supplemental calcium … is associated with lower survival and greater AVR [aortic valve replacement surgery] in elderly patients with mild to moderate AV [aortic stenosis].”

What Did This Study Get Wrong?

thumbs down symbolLet me start by looking at the limitations of this study.

#1: This is a single study. It is a well-designed study, but it is only one study. And, as the authors acknowledge, previous studies have come down on both sides of this issue. Until we have more well-designed studies that come to the same conclusion, we cannot be confident this study is correct.

#2: The results of this study could have been significantly influenced by confounding variables.

For example:

  • End-stage kidney disease is associated with a dysregulation of calcium metabolism that can lead to aortic valve calcification. Patients in the calcium supplementation group had a 2-fold higher incidence of chronic kidney disease and a 10-fold higher incidence of kidney dialysis.
  • There were also significant differences in several diseases and drugs that influence the risk of developing aortic stenosis between the groups.

In the words of the authors, “Given the degree of clinical differences between the groups, there was a risk of residual confounding that may have impacted our findings; we attempted to mitigate this with our statistical model.”

However, as Mark Twain is quoted as saying, “There are lies. There are damn lies. And then there are statistics.”

That is a humorous way of saying we should not put too much faith in statistical manipulations of the data.

#3: They did not measure parathyroid levels. That is a serious omission because elevated parathyroid levels are a major driver of the type of dysfunctional calcium metabolism that could lead to calcification of the aortic valve.

#4: Serum calcium and vitamin D levels were slightly lower in the calcium supplementation group. This is unexpected because aortic stenosis is usually associated with higher serum calcium and vitamin D levels.

The authors speculated this might be due to transient increases in serum calcium levels following supplementation. This is possible for some calcium supplements, but not others.

Specifically, some calcium supplements are marketed on how quickly they get into the bloodstream. But those same supplements often do not provide all the nutrients needed for bone formation. There is always the possibility that excess calcium not used for bone formation might be deposited where we do not want it (such as in the aortic valve).

What Did This Study Get Right?

thumbs up#1: It was a larger, longer lasting study than previous studies on the effect of calcium supplementation on aortic stenosis. Even though it has limitations, we shouldn’t discount it. It might just be correct.

#2: It doesn’t necessarily conflict with the earlier studies showing that calcium supplementation doesn’t increase cardiovascular disease risk. That’s because the design of these studies is very different.

  • The health of the people studied was very different.
    • The earlier studies started with healthy adults and asked whether calcium supplementation increased their risk of developing cardiovascular disease.
    • This study started with people who already had a form of cardiovascular disease associated with abnormal calcium metabolism and asked whether calcium supplementation increased their risk of dying from the disease.
  • The age of the people studied was very different.
    • The earlier studies started with middle-aged adults and followed them for 10-20 years
    • This study started with people in their mid-70’s and followed them for almost 6 years.
  • The type of cardiovascular disease studied was different.
    • The earlier studies included all types of cardiovascular disease.
    • This study focused on a very minor type of cardiovascular disease, aortic stenosis. Aortic stenosis accounts for about 10% of all cardiovascular disease 17% of cardiovascular deaths. There may not have been enough deaths from aortic stenosis in the previous studies to have had a statistically significant effect on the results.

Given all these differences, the results of this study may not be incompatible with the results of previous studies

What Does This Study Mean For You?

There are three important takeaways from this and previous studies:

1) For most Americans calcium supplementation does not increase the risk of cardiovascular disease. That has been shown in three major clinical studies.

2) However, if you have been diagnosed with aortic stenosis, calcium supplementation may increase your risk of needing heart valve replacement or of dying from the disease. This study is not definitive, but I would advise caution.

You may wish to discuss with your doctor how to best balance:

    • The need for calcium supplementation to prevent osteoporosis…
    • With the need to limit calcium supplementation to prevent adverse outcomes from your aortic stenosis.

3) Finally, the authors did not discuss a very significant observation from this study, namely that heart valve replacement reduced the risk of dying from aortic stenosis in people taking calcium supplements.

Aortic valve replacement is the only proven treatment for aortic stenosis. If your doctor recommends aortic valve replacement, you should consider it.

The Bottom Line

A recent study looked at the effect of calcium supplementation for people with aortic stenosis, a rare form of heart disease.

The study found:

  • Calcium supplementation increased the need for aortic valve replacement surgery by 50%.
  • Calcium supplementation increased the risk of all-cause mortality* by 31%. When you divided the results into patients who did and did not have aortic valve replacement surgery during the study:
    • Those who received aortic valve replacement surgery did not have a statistically significant increase in risk of death.
  • Calcium supplementation doubled the risk of cardiovascular mortality*. When you divided the results into patients who did and did not have aortic valve replacement surgery within the 59-month follow-up of this study:
    • Those who received aortic valve replacement surgery did not have a statistically significant increase in risk of death.

*Note: Since all the patients enrolled in this study had aortic stenosis at the beginning of the study, these deaths were primarily due to aortic stenosis.

The authors concluded, “Supplemental calcium … is associated with lower survival and greater AVR [aortic valve replacement surgery] in elderly patients with mild to moderate AV [aortic stenosis].”

There are three important takeaways from this and previous studies:

1) For most Americans calcium supplementation does not increase the risk of cardiovascular disease. That has been shown in three major clinical studies.

2) However, if you have been diagnosed with aortic stenosis, calcium supplementation may increase your risk of needing heart valve replacement or of dying from the disease. This study is not definitive, but I would advise caution.

  • You may wish to discuss with your doctor how to best balance:
    • The need for calcium supplementation to prevent osteoporosis…
    • With the need to limit calcium supplementation to prevent adverse outcomes from your aortic stenosis.

3) Finally, the authors did not discuss a very significant observation from this study, namely that heart valve replacement reduced the risk of dying from aortic stenosis in people taking calcium supplements.

Aortic valve replacement is the only proven treatment for aortic stenosis. If your doctor recommends aortic valve replacement, you should consider it.

For more details, read the article above.

These statements have not been evaluated by the Food and Drug Administration. This information is not intended to diagnose, treat, cure, or prevent any disease.

Does Red Meat Cause Frailty In Older Women?

Which Proteins Are Best?

Author: Dr. Stephen Chaney

Fatty SteakThe ads from the meat lobby say, “Red meat does a body good”. Are the ads true?

If we consider the health consequences of regularly eating red meat, the answer appears to be a clear, “No”. Multiple studies have shown a link between red meat consumption and:

  • Coronary heart disease.
  • Stroke
  • Type 2 diabetes.
  • Colon cancer, prostate cancer, and breast cancer.

And, if we consider the environmental consequences of red meat production, the answer also appears to be, “No”. I have discussed this in a recent issue of “Health Tips From the Professor”.

But what about muscle mass and strength? Red meat is a rich source of protein, and we associate meat consumption with an increase in muscle mass. Surely, red meat consumption must help us build muscle mass and strength when we are young and preserve muscle mass and strength as we age.

This is why the recent headlines claiming that red meat consumption increases the risk of frailty in older women were so confusing. I, like you, found those headlines to be counterintuitive. So, I have investigated the study (EA Struijk et al, Journal of Cachexia, Sarcopenia and Muscle, 13: 210-219, 2022) behind the headlines. Here is what I found.

How Was The Study Done?

Clinical StudyThis study utilized data acquired from the Nurses’ Health Study (NHS). The NHS began in 1976 with 121,700 female nurses aged 30 to 55. This study followed 85,871 nurses in the NHS once they reached age 60 for an average of 14 years.

Dietary intake was assessed using a food frequency questionnaire that was administered to all participants in the study every four years between 1980 and 2010. The long-term intake of red meat and other protein sources was based on a cumulative average of all available diet questionnaires for each participant.

The participants also filled out a Medical Outcomes Short Report every four years between 1992 and 2014. Data from this survey was used to calculate something called the FRAIL scale, which includes the following frailty criteria:

  • Fatigue
  • Low muscle strength.
  • Reduced aerobic capacity.
  • Having ≥5 of the following chronic diseases:
    • Cancer
    • High blood pressure
    • Type 2 diabetes
    • Angina
    • Myocardial infarction (heart attack)
    • Congestive heart failure
    • Asthma
    • COPD (chronic obstructive pulmonary disease)
    • Arthritis
    • Parkinson’s disease
    • Kidney disease
    • Depression
  • Greater than ≥5% weight loss in two consecutive assessments.

Frailty was defined as having met 3 or more criteria in the FRAIL scale. The study looked at the effect of habitual consumption of red meat or other protein sources on the development of frailty during the 14-year follow-up period.

Does Red Meat Cause Frailty In Older Women?

The investigators separated the participants into 5 quintiles based on total red meat consumption, unprocessed red meat construction, or processed red meat consumption. The range of intakes was as follows.

Total red meat: 0.4 servings per day to 1.8 servings per day.

Unprocessed red meat: 0.3 servings per day to 1.3 servings per day.

Processed red meat: 0.04 servings per day to 0.6 servings per day.

Clearly none of the women in this study were consuming either vegan or keto diets. As might be expected from a cross-section of the American public, there was a fairly narrow range of daily meat consumption.

Here are the results of the study:

  • Each serving per day of total red meat increased frailty by 13%.
  • Each serving per day of unprocessed red meat increased frailty by 8%.
  • Each serving per day of processed red meat increased frailty by 26%.
  • When each component of the frailty index was examined individually, all of them were positively associated with red meat consumption except for weight loss.

This was perhaps the most unexpected finding of the study. Not only did red meat consumption increased the risk of chronic diseases in these women, which would be expected from many previous studies. But red meat consumption also made these women more tired, weaker, and shorter of breath.

The authors concluded, “Habitual consumption of any type of red meat was associated with a higher risk of frailty.”

Which Proteins Are Best?

Red Meat Vs White MeatThe investigators then asked if replacing one serving/day of red meat with other protein sources was associated with a significantly lower risk of frailty. Here is what they found:

  • Replacing one serving per day of unprocessed red meat with a serving of:
    • Fish reduced frailty risk by 22%.
    • Nuts reduced frailty risk by 14%.
  • Replacing one serving per day of processed red meat with a serving of:
    • Fish reduced frailty risk by 33%
    • Nuts reduced frailty risk by 26%
    • Low-fat dairy reduced frailty risk by 16%
    • Legumes reduced frailty risk by 13%.

The authors concluded, “Replacing red meat with another source of protein including fish, nuts, legumes, and low-fat dairy may be encouraged to reduce the risk of developing frailty syndrome. These findings are in line with dietary guidelines promoting diets that emphasize plant-based sources of protein.” [I would note that fish and low-fat dairy are hardly plant-based protein sources.]

What Does This Study Mean For You?

Questioning WomanI am not yet ready to jump on the “eating red meat causes frailty” bandwagon. This is a very large, well-designed study, but it is a single study. It needs to be replicated by future studies.

And, as a biochemist, I am skeptical about any study that does not offer a clear metabolic rationale for the results. As I said earlier, increased protein intake is usually associated with an increase in muscle mass when we are young and a preservation of muscle mass as we age. There is no obvious metabolic explanation for why an increase in red meat consumption in older women would cause a decrease in muscle mass and other symptoms of frailty.

On the other hand, there are plenty of well documented reasons for decreasing red meat intake. Consumption of red meat is bad for our health and bad for the health of the planet as I have discussed in an earlier issue of “Health Tips From the Professor”. And substituting other protein sources, especially plant proteins, is better for our health and the health of our planet.

Finally, we also need to consider the possibility that this study is correct and that future studies will confirm these findings. Stranger things have happened.

As we age, we begin to lose muscle mass, a process called sarcopenia. Increased protein intake and resistance exercise can help slow this process. While I am not ready to say that red meat causes decreased muscle mass, I do think this study should make us think about which protein sources we use to prevent sarcopenia. At the very least we should not use age-related muscle loss as an excuse to increase our red meat intake. That might just be counterproductive.

The Bottom Line

A recent study looked at the effect of red meat consumption on frailty in older women. It came to the unexpected conclusion that:

  • Each serving per day of total red meat increased frailty by 13%.
  • Each serving per day of unprocessed red meat increased frailty by 8%.
  • Each serving per day of processed red meat increased frailty by 26%.
  • The increase in frailty could be reduced by replacing one serving/day of red meat with a serving of fish, nuts, low-fat dairy, or legumes.

I am not yet ready to jump on the “eating red meat causes frailty” bandwagon. This is a very large, well-designed study, but it is a single study. It needs to be replicated by future studies. And, as a biochemist, I am skeptical about any study that does not offer a clear metabolic rationale for the results.

On the other hand, there are plenty of well documented reasons for decreasing red meat intake. Consumption of red meat is bad for our health and for the health of the planet.

Finally, we also need to consider the possibility that this study is correct and that future studies will confirm these findings. Stranger things have happened.

As we age, we begin to lose muscle mass, a process called sarcopenia. Increased protein intake and resistance exercise can help slow this process. This study should make us think about which protein sources we use to prevent sarcopenia. At the very least we should not use age-related muscle loss as an excuse to increase our red meat intake. That might just be counterproductive.

These statements have not been evaluated by the Food and Drug Administration. This information is not intended to diagnose, treat, cure or prevent any disease.

Omega-3s And Congestive Heart Failure

We Have Been Asking The Wrong Questions 

Author: Dr. Stephen Chaney

Confusion Clinical StudiesToday’s Health Tip is a follow-up to the article I published last month on omega-3s and heart disease risk. In that article I pointed out the reasons why studies of the effect of omega-3s and heart disease risk have been so confusing.

One of the reasons is that many of the studies have been asking the wrong questions.

  • They were asking whether omega-3s reduced the risk of heart disease for everyone. Instead, they should have been asking who benefited from omega-3 supplementation.
  • They were asking whether omega-3s reduced the risk of all forms of heart disease combined. Instead, they should have been asking whether omega-3s reduced the risk of specific kinds of heart disease.

I also discussed a large clinical trial, the VITAL study, that was designed to answer those two questions.

The study I will describe today (L Djoussé et al, JACC Heart Failure, 10: 227-234, 2022) mined the data from the VITAL study to evaluate the effect of omega-3 supplementation on congestive heart failure, a form of heart disease that was not discussed in the VITAL study.

Everything You Need To Know About Congestive Heart Failure

Congestive Heart FailureCongestive heart failure is a killer. The term congestive heart failure simply means that your heart no longer pumps blood well. The initial symptoms are relatively non-specific and include things like.

  • Shortness of breath.
  • Fatigue and weakness.
  • Reduced ability to exercise.
  • Rapid or irregular heartbeat.
  • Persistent cough or wheezing.

However, as it progresses, the symptoms get much worse. Fluid builds up in your tissues.

  • Fluid buildup in your legs, ankles, and feet can make it difficult to walk.
  • Fluid buildup in your lungs makes it difficult to breathe. In advanced stages it can feel like you are drowning in a room full of air.

According to the CDC:

  • 4 million Americans have congestive heart failure (CHF).
    • It leads to ~380,000 deaths/year.
  • 83% of patients diagnosed with CHF will be hospitalized at least once.
    • 67% will be hospitalized two or more times.
  • CHF costs >$30 billion per year in health care costs and lost wages.

The risk of congestive heart failure is not spread evenly across the American population. Black Americans and Americans with type 2 diabetes are at increased risk.

According to the Framingham Heart Study:

  • Type 2 diabetes increases the risk of CHF 2-fold in men and 5-fold in women. The reasons are not entirely clear. However:
    • High blood sugar is thought to either damage cells in heart muscle, weakening it, or damage small blood vessels within the heart, making it more difficult for the heart to pump blood.
    • Some diabetes drugs that lower blood sugar also appear to increase the risk of congestive heart failure.

According to the CDC:

  • Black Americans are 2-fold more likely to develop CHF than White Americans. Again, the reasons are not clear. However:
    • Some experts feel it could be due to the higher incidence of untreated high blood pressure in Black Americans.

In summary:

  • Congestive heart failure is a serious disease. Its symptoms affect your quality of life, and it can lead to hospitalizations and death.
  • Black Americans and Americans with type 2 diabetes are at higher risk of developing congestive heart failure.

How Was The Study Done?

The VITAL study, from which these data were extracted, was a placebo-controlled clinical trial designed to measure the effects of 1,000 mg omega-3 supplementation on the risk of developing heart disease. It enrolled 25,871 Americans aged 55 years or older and followed them for an average of 5.3 years.

The participants enrolled in the VITAL study represented a cross-section of the American population. Most were at low risk of heart disease, but there were subsets of the study group who were at higher risk of heart disease. A strength of the VITAL study was that it was designed so the high-risk subgroups could be evaluated separately.

The current study utilized data from the VITAL study to look at the effect of omega-3 supplementation on hospitalizations due to congestive heart failure. It also evaluated the effect of type 2 diabetes and race on the risk of hospitalizations.

Omega-3s And Congestive Heart Failure

Omega-3s And Heart DiseaseWhen the investigators looked at the whole population, most of whom were at low-risk of congestive heart failure, they did not see any effect of omega-3 supplementation on the risk of hospitalizations due to congestive heart failure.

However, when they looked at high risk groups, the story was much different.

In patients with type-2 diabetes:

  • Omega-3 supplementation reduced the risk of the initial hospitalization for congestive heart failure by 31%
  • Omega-3 supplementation reduced the risk of multiple hospitalizations due to congestive heart failure by 47%.

The effect of omega-3 supplementation on hospitalizations was greatest for the Black participants in the study.

In the words of the authors, “Our data show beneficial effects of omega-3 fatty acid supplements on the incidence of heart failure hospitalizations in participants with type 2 diabetes but not in those without type 2 diabetes, and such benefit appeared to be stronger in Black participants with type 2 diabetes.”

We Are Asking The Wrong Questions

ScientistAs I said above, there is so much confusion about the effect of omega-3s on heart disease because we scientists have been asking the wrong questions:

  • We have been asking whether omega-3s reduce the risk of heart disease for everyone. Instead, we should have been asking who benefits from omega-3 supplementation.
  • We have been asking whether omega-3s reduced the risk of all forms of heart disease combined. Instead, we should have been asking whether omega-3s reduced the risk of specific kinds of heart disease.

In my “Health Tip” last month I discussed a large clinical study, the VITAL study, that was specifically designed to answer the right questions. Like so many other studies it found that omega-3 supplementation did not significantly reduce the risk of all kinds of heart disease for everyone.

However, what it did find was more important than what it did not find:

  • When they looked at the effect of omega-3s on heart disease risk in high-risk groups, they found that major cardiovascular events were reduced by:
    • 26% in African Americans.
    • 26% in patients with type 2 diabetes.
    • 17% in patients with a family history of heart disease.
    • 19% in patients with two or more risk factors of heart disease.
  • When they looked at the effect of omega-3s on heart disease risk in people with low omega-3 intake, they found that omega-3 supplementation reduced major cardiovascular events by:
    • 19% in patients with low fish intake.
  • When they looked at the effect of omega-3s on the risk of different forms of heart disease, they found that omega-3 supplementation reduced:
    • Heart attacks by 28% in the general population and by 70% for African Americans.
    • Deaths from heart attacks by 50%.
    • Deaths from coronary heart disease (primarily heart attacks and ischemic strokes (strokes caused by blood clots)) by 24%.

In other words, when they asked the wrong questions, they got the wrong answer. If they had just looked at the effect of omega-3 supplementation on all forms of heart disease for everyone (like most other omega-3 studies), they would have concluded that omega-3s are worthless.

However, when they asked the right questions, they found that omega-3s were very beneficial for high-risk populations and for certain types of heart disease.

The current study utilized the same data to analyze the effect of omega-3 supplementation on hospitalizations due to congestive heart failure. And the results were similar.

If they had asked the wrong question, “Does omega-3 supplementation reduce congestive heart failure hospitalizations for everyone?”, they would have concluded that omega-3 supplementation was worthless.

However, instead they asked, “Does omega-3 supplementation reduce congestive heart failure hospitalizations for certain high-risk groups” and were able to show that omega-3 supplementation significantly reduced congestive heart failure hospitalizations for people with type 2 diabetes and for Blacks.

We need to change the paradigm for clinical studies of supplements. The old paradigm asks the wrong questions. If we really want to know the role of supplementation for our health, we need to start asking the right questions.

The Bottom Line

There is perhaps nothing more confusing to the average person than the “truth” about omega-3 supplementation and heart disease risk. Much of the confusion is because we have been asking the wrong questions:

  • We have been asking whether omega-3 supplementation reduces the risk of heart disease for everyone. Instead, we should have been asking who benefits from omega-3 supplementation.
  • We have been asking whether omega-3 supplementation reduces the risk of all forms of heart disease combined. Instead, we should have been asking whether omega-3 supplementation reduces the risk of specific kinds of heart disease.

A recent study on the effect of omega-3 supplementation on hospitalizations due to heart disease is a perfect example.

If they had asked the wrong question, “Does omega-3 supplementation reduce congestive heart failure hospitalizations for everyone?”, they would have concluded that omega-3 supplementation was worthless.

However, instead they asked, “Does omega-3 supplementation reduce congestive heart failure hospitalizations for certain high-risk groups” and were able to show that omega-3 supplementation significantly reduced congestive heart failure hospitalizations for people with type 2 diabetes and for Blacks.

We need to change the paradigm for clinical studies of supplements. The old paradigm asks the wrong questions. If we really want to know the role of supplementation for our health, we need to start asking the right questions.

For more details read the article above.

These statements have not been evaluated by the Food and Drug Administration. This information is not intended to diagnose, treat, cure or prevent any disease.

The Omega-3 Pendulum

Who Benefits Most From Omega-3s? 

Author: Dr. Stephen Chaney

Pendulum
Pendulum

If you were around in the 60’s, you might remember the song “England Swings Like a Pendulum Do”. It was a cute song, but it had nothing to do with pendulums. This week I am talking about something that really does resemble a pendulum – the question of whether omega-3s reduce heart disease risk.

There is perhaps nothing more confusing to the average person than the “truth” about omega-3s and heart disease risk. The headlines and expert opinion on the topic swing wildly between “omega-3s reduce heart disease risk” to “omega-3s have no effect on heart disease risk” and back again. To me these swings resemble the swings of a pendulum – hence the title of this article.

Part of the reason for the wild swings is that journalists and most “experts” tend to rely on the latest study and ignore previous studies. Another contributing factor is that most journalists and experts read only the main conclusions in the article abstract. They don’t read and analyze the whole study.

So, in today’s “Health Tips From the Professor” I plan to:

  • Analyze 3 major studies that have influenced our understanding of the relationship between omega-3 intake and heart disease risk. I will tell you what the experts missed about these studies and why they missed it.
  • Summarize what you should know about omega-3 intake and your risk of heart disease.

Why Is The Role Of Omega-3s In Preventing Heart Disease So Confusing?

SecretsIn answering that question, let me start with what I call “Secrets Only Scientists Know”.

#1: Each study is designed to disprove previous studies. That is a strength of the scientific method. But it guarantees there will be studies on both sides of every issue.

Responsible scientists look at all high-quality studies and base their opinions on the weight of evidence. Journalists and less-responsible “experts” tend to “cherry pick” the studies that match their opinions.

#2: Every study has its flaws. Even high-quality studies have unintended flaws. And I have some expertise in identifying unintended flaws.

I published over 100 papers that went through the peer review process. And I was involved in the peer review of manuscripts submitted by other scientists. In the discussion below I will use my experience in reviewing scientific studies to identify unintended flaws in 3 major studies on omega-3s and heart disease risk.

Next, let me share the questions I ask when reviewing studies on omega-3s and heart disease. I am just sharing the questions here. Later I will share examples of how these questions allowed me to identify unintended flaws in the studies I review below.

#1: How did they define heart disease? The headlines you read usually refer to the effect of omega-3s on “heart disease”. However, heart disease is a generic term. In layman’s terms, it encompasses angina, heart attacks, stroke due to blood clots, stroke due brain bleeds, congestive heart failure, impaired circulation, and much more.

Omega-3s have vastly different effects on different forms of heart disease, so it is important to know which form(s) of heart disease the study examined. And if the study included all forms of heart disease, it is important to know whether they also looked at the forms of heart disease where omega-3s have been shown to have the largest impact.

#2: What was the risk level of the patients in the study? If the patients in the study are at imminent risk of a heart attack or major cardiovascular event, it is much easier to show an effect than if they are at low risk.

For example, it is easy to show that statins reduce the risk of a second heart attack in someone who has just suffered a heart attack. These are high-risk patients. However, if you look at patients with high cholesterol but no other risk factors for heart disease, it is almost impossible to show a benefit of statins. These are low-risk patients.

If it is difficult to show that statins benefit low-risk patients, why should we expect to be able to show that omega-3s benefit low-risk patients?

[Note: I am not saying that statins do not benefit low-risk patients. I am just saying it is very difficult to prove they do in clinical studies.]

#3: How much omega-3s are the patients getting in their diet? The public reads the headlines. When the headlines say that omega-3s are good for their hearts, they tend to take omega-3 supplements. When the headlines say omega-3s are worthless, they cut back on omega-3 supplements. So, there is also a pendulum effect for omega-3 intake.

Omega-3s are fats. So, omega-3s accumulate in our cell membranes. The technical term for the amount of omega-3s in our cellular membranes is something called “Omega-3 Index”. Previous studies have shown that:

    • An omega-3 index of 4% or less is associated with high risk of heart disease, and…
    • An omega-3 index of 8% or more is associated with a low risk of heart disease.

When the omega-3 index approaches 8%, adding more omega-3 is unlikely to provide much additional benefit. Yet many studies either don’t measure or ignore the omega-3 index of patients they are enrolling in the study.

#4: How many and what drugs were the patients taking? Many heart disease patients are taking drugs that lower blood pressure, lower triglycerides, reduce inflammation, and reduce the risk of blood clot formation. These drugs do the same things that omega-3s do. This decreases the likelihood that you can see any benefit from increasing omega-3s intake.

The Omega-3 Pendulum

With all this in mind let’s examine three major double-blind, placebo-controlled studies that looked at the effect of omega-3s on heart disease risk and came to different conclusions. Here is a summary of the studies.

GISSI Study ASCEND Study VITAL Study
11,000 participants 15,480 participants 25,871 participants
Followed for 3.5 years Followed for 7.4 years Followed for 5.3 years
Europe USA USA
Published in 1999 Published in 2018 Published in 2019
Dose = 1 gm/day Dose = 1 gm/day Dose = 1 gm/day
20% ↓ in heart disease deaths No effect on fatal or non-fatal heart attack or stroke Significant ↓ in some forms of heart disease
45% ↓ in fatal heart attack or stroke – as effective as statins Significant ↓ in heart disease risk for some patients

heart attacksAt first glance the study designs look similar, so why did these studies give such different results. This is where the unintended flaws come into play. Let’s look at each study in more detail.

The GISSI Study:

  • The patients enrolled in this study all had suffered a heart attack in the previous 3 months. They were at very high risk of suffering a second heart attack within the next couple of years.
  • Omega-3 intake was not measured in this study. But it was uncommon for Europeans to supplement with omega-3s in the 90’s. And European studies on omega-3 intake during that period generally found that omega-3 intake was low.
  • Patients enrolled in this study were generally taking only 2 heart disease drugs, a beta-blocker and a blood pressure drug.

The ASCEND Study:

  • The patients enrolled in this study had diabetes without any evidence of heart disease. Only 17% of the flawspatients enrolled in the study were at high risk of heart disease. 83% were at low risk. Remember, it is difficult to show a benefit of any intervention in low-risk patients.
  • The average omega-3 index of patients enrolled in this study was 7.1%. That means omega-3 levels were near optimal at the beginning of the study. Adding additional omega-3s was unlikely to show much benefit.
  • Most of the patients in this study were on 3-5 heart drugs and 1-2 diabetes drugs which duplicated the effects of omega-3s.

That means this study was asking a very different question. It was asking whether omega-3s provided any additional benefit for patients who were already taking multiple drugs that duplicated the effects of omega-3s.

However, you would have never known that from the headlines. The headlines simply said this study showed omega-3s were ineffective at preventing heart disease.

Simply put, this study was doomed to fail. However, despite its many flaws the authors reported that omega-3s did reduce one form of heart disease, namely vascular deaths (primarily due to heart attack and stroke). Somehow this observation never made it into the headlines.

The VITAL Study:

  • This study enrolled a cross-section of the American population aged 55 or older (average age = 67). As you might suspect for a cross-section of the American population, most of the participants in this study were at low risk for heart disease. This limited the ability of the study to show a benefit of omega-3 supplementation in the whole population.

However, there were subsets of the group who were at high risk of heart disease (more about that below).

  • This study excluded omega-3 supplement users The average omega-3 index of patients enrolled in this study was 2.7% at the beginning of the study and increased substantially during the study. This enhanced the ability of the study to show a benefit of omega-3 supplementation.
  • Participants in this study were only using statins and blood pressure medications. People using more medications were excluded from the study. This also enhanced the ability of the study to show a benefit of omega-3 supplementation.

The authors reported that “Supplementation with omega-3 fatty acids did not result in a lower incidence of major cardiovascular events…” This is what lazy journalists and many experts reported about the study.

good newsHowever, the authors designed the study so they could also:

  • Look at the effect of omega-3s on heart disease risk in high-risk groups. They found that major cardiovascular events were reduced by:
    • 26% in African Americans.
    • 26% in patients with diabetes.
    • 17% in patients with a family history of heart disease.
    • 19% in patients with two or more risk factors of heart disease.
  • Look at the effect of omega-3s on heart disease risk in people with low omega-3 intake. They found that omega-3 supplementation reduced major cardiovascular events by:
    • 19% in patients with low fish intake.
  • Look at the effect of omega-3s on the risk of different forms of heart disease. They found that omega-3 supplementation reduced:
    • Heart attacks by 28% in the general population and by 70% for African Americans.
    • Deaths from heart attacks by 50%.
    • Deaths from coronary heart disease (primarily heart attacks and ischemic strokes (strokes caused by blood clots)) by 24%.

In summary, if you take every study at face value it seems like the pendulum is constantly swinging from “omega-3s reduce heart disease risk” to “omega-3s are worthless” and back again. There appears to be no explanation for the difference in results from one study to the next.

However, if you remember that even good studies have unintended flaws and ask the four questions I proposed Question Markabove, it all makes sense.

  • How is heart disease defined? Studies looking at heart attack and/or ischemic stroke are much more likely to show a benefit of omega-3s than studies that include all forms of heart disease.
  • Are the patients at low-risk or high-risk for heart disease? Studies in high-risk populations are much more likely to show a benefit than studies in low-risk populations.
  • What is the omega-3 intake of participants in the study? Studies in populations with low omega-3 intake are more likely to show a benefit of omega-3 supplementation than studies in populations with high omega-3 intake.
  • How many heart drugs are the patients taking? Studies in people taking no more than one or two heart drugs are more likely to show a benefit of omega-3 supplementation than studies in people taking 3-5 heart drugs.

When you view omega-3 clinical studies through the lens of these 4 questions, the noise disappears. It is easy to see why these studies came to different conclusions.

Who Benefits Most From Omega-3s?

omega 3s and heart diseaseThe answers to this question are clear:

  • People at high risk of heart disease are most likely to benefit from omega-3 supplementation.
  • People with low omega-3 intake are most likely to benefit from omega-3 supplementation.
  • Omega-3 supplementation appears to have the biggest effect on heart attack and ischemic stroke (stroke due to blood clots). Its effect on other forms of heart disease is less clear.
  • Omega-3 supplementation appears to be most effective at preventing heart disease if you are taking no more than 1 or 2 heart drugs. It may provide little additional benefit if you are taking multiple heart drugs. However, you might want to have a conversation with your doctor about whether omega-3 supplementation might allow you to reduce or eliminate some of those drugs.

What about the general population? Is omega-3 supplementation useful for patients who are at low to moderate risk of heart disease?

  • If we compare omega-3 studies with statin studies, the answer would be yes. Remember that statins cannot be shown to reduce heart attacks in low-risk populations. However, because they are clearly effective in high-risk patients, the medical community assumes they should be beneficial in low-risk populations. The same argument could be made for omega-3s.
  • We also need to recognize that our ability to recognize those who are at high risk of heart disease is imperfect. For too many Americans, the first indication that they have heart disease is sudden death!

When I was still teaching, I invited a cardiologist to speak to my class of first year medical students. He told the students, only partly in jest, that he felt statins were so beneficial they “should be added to the drinking water”.

I feel the same way about omega-3s:

  • Most Americans do not get enough omega-3s in our diet.
  • Our omega-3 index is usually much closer to 4% (high risk of heart disease) than 8% (low risk of heart disease).
  • Many of us may not realize that we are at high risk of heart disease until it is too late.
  • And omega-3s have other health benefits.

For all these reasons, omega-3 supplementation only makes sense.

The Bottom Line

There is perhaps nothing more confusing to the average person than the “truth” about omega-3s and heart disease risk. The headlines and expert opinion on the topic swing wildly between “omega-3s reduce heart disease risk” to “omega-3s have no effect on heart disease risk” and back again. To me these swings resemble the swings of a pendulum – hence the title of this article.

If you take every study at face value, there appears to be no explanation for the difference in results from one study to the next. However, if you recognize that even good studies have unintended flaws and ask four simple questions to expose these flaws, it all makes sense.

For the four questions you should ask when reviewing any omega-3 study and my recommendations for who benefits the most from omega-3 supplementation, read the article above.

These statements have not been evaluated by the Food and Drug Administration. This information is not intended to diagnose, treat, cure, or prevent any disease.

Who Benefits Most From Supplementation?

Supplements Are Part of a Holistic Lifestyle

Author: Dr. Stephen Chaney

need for supplementsThe headlines about supplementation are so confusing. Are they useful, or are they a waste of money? Will they cure you, or will they kill you? I feel your pain.

I have covered these questions in depth in my book, “Slaying The Supplement Myths”, but let me give you a quick overview today. I call it: “Who Benefits Most From Supplementation?” I created the graphic on the left to illustrate why I feel responsible supplementation is an important part of a holistic lifestyle for most Americans. Let me give you specific examples for each of these categories.

 

Examples of Poor Diet

No Fast FoodYou have heard the saying that supplementation fills in the nutritional gaps in our diets, so what are the nutritional gaps? According to the USDA’s 2020-2025 Dietary Guidelines for Americans, many Americans are consuming too much fast and convenience foods. Consequently, we are getting inadequate amounts of calcium, magnesium, and vitamins A, D, E and C. Iron is considered a nutrient of concern for young children and pregnant women. In addition, folic acid, vitamin B6, and iodine are nutrients of concern for adolescent girls and pregnant women.

According to a recent study, regular use of a multivitamin is sufficient to eliminate all these deficiencies except for calcium, magnesium and vitamin D (J.B. Blumberg et al, Nutrients, 9(8): doi: 10.3390/nu9080849, 2017). A well-designed calcium, magnesium and vitamin D supplement may be needed to eliminate those deficiencies.

In addition, intake of omega-3 fatty acids from foods appears to be inadequate in this country. Recent studies have found that American’s blood levels of omega-3s are among the lowest in the world and only half of the recommended level for reducing the risk of heart disease (K.D. Stark et al, Progress In Lipid Research, 63: 132-152, 2016; S.V. Thuppal et al, Nutrients, 9, 930, 2017; M Thompson et al, Nutrients, 11: 177, 2019). Therefore, omega-3 supplementation is often a good idea.

In previous editions of “Health Tips From the Professor” I have talked about our “mighty microbiome”, the bacteria and other microorganisms in our intestine. These intestinal bacteria can affect our tendency to gain weight, our immune system, inflammatory diseases, chronic diseases such as diabetes, cancer, and heart diseases, our mood—the list goes on and on. This is an emerging science. We are learning more every day, but for now it appears our best chances for creating a health-enhancing microbiome are to consume a primarily plant-based diet and take a probiotic supplement.

Finally, diets that eliminate whole food groups create nutritional deficiencies. For example, vegan diets increase the risk of deficiencies in vitamin B12, vitamin D, calcium, iron, zinc and long chain omega-3 fatty acids. A recent study reported that the Paleo diet increased the risk of calcium, magnesium, iodine, thiamin, riboflavin, folate and vitamin D deficiency (A. Genomi et al, Nutrients, 8, 314, 2016). The Keto diet is even more restrictive and is likely to create additional deficiencies.

Examples of Increased Need

pregnant women taking omega-3We have known for years that pregnancy and lactation increase nutritional requirements. In addition, seniors have increased needs for protein, calcium, vitamin D and vitamin B12. In previous issues of “Health Tips From the Professor” I have also shared recent studies showing that protein requirements are increased with exercise.

Common medications also increase our need for specific nutrients. For example, seizure medications can increase your need for vitamin D and calcium. Drugs to treat diabetes and acid reflux can increase your need for vitamin B12. Other drugs increase your need for vitamin B6, folic acid, and vitamin K. Excess alcohol consumption increases your need for thiamin, folic acid, and vitamin B6. These are just a few examples.

Vitamin D is a special case. Many people with apparently adequate intake of vitamin D have low blood levels of 25-hydroxy vitamin D. It is a good idea to have your blood 25-hydroxy vitamin D levels measured on an annual basis and supplement with vitamin D if they are low.

More worrisome is the fact that we live in an increasing polluted world and some of these pollutants may increase our needs for certain nutrients. For example, in a recent edition of “Health Tips From the Professor” I shared a study reporting that exposure to pesticides during pregnancy increases the risk of giving birth to children who will develop autism, and that supplementation with folic acid during pregnancy reduces the effect of pesticides on autism risk. I do wish to acknowledge that this is a developing area of research. This and similar studies require confirmation. It is, however, a reminder that there may be factors beyond our control that have the potential to increase our nutritional needs.

Examples of Genetics Influencing Nutritional Needs

nutrigenomicsThe effect of genetic variation on nutritional needs is known as nutrigenomics. One of the best-known examples of nutrigenomics is genetic variation in the methylenetetrahydrofolate reductase (MTHFR) gene.  MTHFR gene mutations increase the risk of certain birth defects, such as neural tube defects. MTHFR mutations also slightly increase the requirement for folic acid. A combination of food fortification and supplementation with folic acid have substantially decreased the prevalence of neural tube defects in the US population. This is one of the great success stories of nutrigenomics. Parenthetically, there is no evidence that methylfolate is needed to decrease the risk of neural tube defects in women with MTHFR mutations.

Let me give you a couple of additional examples:

One of them has to do with vitamin E and heart disease (A.P. Levy et al, Diabetes Care, 27: 2767, 2004). Like a lot of other studies there was no significant effect of vitamin E on cardiovascular risk in the general population. But there is a genetic variation in the haptoglobin gene that influences cardiovascular risk. The haptoglobin 2-2 genotype increases oxidative damage to the arterial wall, which significantly increases the risk of cardiovascular disease. When the authors of this study looked at the effect of vitamin E in people with this genotype, they found that it significantly decreased heart attacks and cardiovascular deaths.

This has been confirmed by a second study specifically designed to look at vitamin E supplementation in that population group (F. Micheletta et al, Arteriosclerosis, Thrombosis and Vascular Biology, 24: 136, 2008). This is an example of a high-risk group benefiting from supplementation, but in this case the high risk is based on genetic variation.

Let’s look at soy and heart disease as a final example. There was a study called the ISOHEART study (W.L. Hall et al, American Journal of Clinical Nutrition, 82: 1260-1268, 2005 (http://ajcn.nutrition.org/content/82/6/1260.abstract); W.L. Hall et al, American Journal of Clinical Nutrition, 83: 592-600, 2006) that looked at a genetic variation in the estrogen receptor which increases inflammation and decreases levels of HDL. As you might expect, this genotype significantly increases cardiovascular risk.

Soy isoflavones significantly decrease inflammation and increase HDL levels in this population group. But they have no effect on inflammation or HDL levels in people with other genotypes affecting the estrogen reception. So, it turns out that soy has beneficial effects, but only in the population that’s at greatest risk of cardiovascular disease, and that increased risk is based on genetic variation.

These examples are just the “tip of the iceberg”. Nutrigenomics is an emerging science. New examples of genetic variations that affect the need for specific nutrients are being reported on a regular basis. We are not ready to start genotyping people yet. We don’t yet know enough to design a simple genetic test to predict our unique nutritional needs. That science is 10-20 years in the future, but this is something that’s coming down the road.

What the current studies tell us is that some people are high-risk because of their genetic makeup, and these are people for whom supplementation is going to make a significant difference. However, because genetic testing is not yet routine, most people are completely unaware that they might be at increased risk of disease or have increased nutritional requirements because of their genetic makeup.

Examples of Disease Influencing Nutritional Needs

Finally, let’s consider the effect of disease on our nutritional needs. If you look at the popular literature, much has been written about the effect of stress on our nutritional needs. In most case, the authors are referring to psychological stress. In fact, psychological stress has relatively minor effect on our nutritional needs.

Metabolic stress, on the other hand, has major effects on our nutritional needs. Metabolic stress occurs when our body is struggling to overcome disease, recover from surgery, or recover from trauma. When your body is under metabolic stress, it is important to make sure your nutritional status is optimal.

The effects of surgery and trauma on nutritional needs are well documented. In my book, “Slaying The Supplement Myths”, I discussed the effects of disease on nutritional needs in some detail. Let me give you a brief overview here. It is very difficult to show beneficial effects of supplementation in a healthy population (primary prevention). However, when you look at populations that already have a disease, or are at high risk for disease, (secondary prevention), the benefits of supplementation are often evident.

For example, studies suggest that vitamin E, B vitamins, and omega-3s each may reduce heart disease risk, but only in high-risk populations. Similarly, B vitamins (folic acid, B6 and B12) appear to reduce breast cancer risk in high risk populations.

Who Benefits Most From Supplementation?

Question MarkWith this information in mind, let’s return to the question: “Who benefits most from supplementation? Here is my perspective.

1) The need for supplementation is greatest when these circles overlap, as they do for most Americans.

2) The problem is that while most of us are aware that our diets are not what they should be, we are unaware of our increased needs and/or genetic predisposition. We are also often unaware that we are at high risk of disease. For too many Americans the first indication they have heart disease is sudden death, the first indication of high blood pressure is a stroke, or the first indication of cancer is a diagnosis of stage 3 or 4 cancer.

So, let’s step back and view the whole picture. The overlapping circles are drawn that way to make a point. A poor diet doesn’t necessarily mean you have to supplement. However, when a poor diet overlaps with increased need, genetic predisposition, disease, or metabolic stress, supplementation is likely to be beneficial. The more overlapping circles you have, the greater the likely benefit you will derive from supplementation.

That is why I feel supplementation should be included along with diet, exercise, and weight control as part of a holistic approach to better health.

The Bottom Line

In this article I provide a perspective on who benefits most from supplementation and why. There are four reasons to supplement.

  1. Fill Nutritional gaps in our diet

2) Meet increased nutritional needs due to pregnancy, lactation, age, exercise, many common medications, and environmental pollutants.

3) Compensate for genetic variations that affect nutritional needs.

4) Overcome needs imposed by metabolic stress due to trauma, surgery, or disease.

With this information in mind, let’s return to the question: “Who benefits most from supplementation? Here is my perspective.

  1. A poor diet alone doesn’t necessarily mean you have to supplement. However, when a poor diet overlaps with increased need, genetic predisposition, or metabolic stress, supplementation is likely to be beneficial. The more overlap you have, the greater the likely benefit you will derive from supplementation.

2) The problem is that while most of us are aware that our diets are not what they should be, we are unaware of our increased needs and/or genetic predisposition. We are also often unaware that we are at high risk of disease. For too many Americans the first indication they have heart disease is sudden death, the first indication of high blood pressure is a stroke, or the first indication of cancer is a diagnosis of stage 3 or 4 cancer.

For more details, read the article above.

These statements have not been evaluated by the Food and Drug Administration. This information is not intended to diagnose, treat, cure or prevent any disease.

Are We Killing Our Children With Kindness?

The Danger Of Ultraprocessed Foods 

Author: Dr. Stephen Chaney

fast foodIt breaks my heart when I see a mom and her children in the checkout line of a supermarket with a cart filled with sodas, sweets, and convenience foods and devoid of fresh fruits and vegetables – or when I see fast food restaurants packed with parents and their children.

I get it. Our kids love these foods. It seems like an act of kindness to give them the foods they crave. But are we killing our children with kindness?

Let me explain. The human brain is hardwired to crave sweets, salt, and fat. In prehistoric times each of these cravings had a survival benefit. For example:

  • Mother’s milk is naturally sweet. It only makes sense that babies should crave the nutrition source that is essential for their early growth and development.
  • Fruits provide a cornucopia of vitamins, minerals, and phytonutrients. But fruits were scarce and seasonal in prehistoric times. Their sweetness provided an incentive for early man to seek them out.
  • Some salt is essential for life. Yet in early history it was scare. It was worth its weight in gold.
  • In prehistoric times it was feast or famine. The human body has an unlimited capacity to store fat in times of plenty, and those fat stores carried early man through times of famine.

Today most Americans live in a time of food abundance. There are fast food restaurants on almost every street corner and in every shopping mall. We think of famine as the days we skipped lunch because we were busy.

Yet these cravings remain, and the food industry has weaponized them. They are churning out an endless supply highly processed foods and beverages. These foods are not being designed to improve their nutritional value. They are designed to satisfy our cravings and lure us and our children into consuming more of them every year.

Scientists have developed a classification system that assigns foods in the American diet to different groups based on the degree of processing of that food. As you might expect, the best classification is unprocessed foods. The worst classification is called “ultraprocessed foods”. [I will describe this classification system in more detail in the next section.]

It is time we asked how much ultraprocessed foods our children are eating and what it is doing to their health. That is the topic of the study (L Wang et al, JAMA, 326: 519-530, 2021) I will discuss today.

How Was This Study Done?

Clinical StudyThe data for this study were obtained from NHANES (National Health and Nutrition Examination Survey) dietary data collected from 33,795 American children (ages 2-19, average age = 10) between 1999 and 2018.

NHANES is a program conducted by the CDC to survey the health and nutritional status of adults and children in the United States. The survey has been conducted on a continuous, yearly basis since 1999.

The dietary data are collected via 24-hour dietary recalls conducted by trained interviewers, with a second recall administered over the phone 3-10 days later to improve the accuracy of the data.

  • Children aged 12-19 completed the dietary survey on their own.
  • For children aged 6-11, a parent or guardian assisted them in filling out the survey.
  • For children aged 2-5, a parent or guardian filled out the survey for them.

The foods and beverages consumed by the children were divided into 4 major groups based on the extent of processing using a well-established classification system called NOVA. The 4 groups are:

1) Unprocessed Or Minimally Processed Foods.

  • This includes whole foods and foods that are minimally processed without the addition of oils, fats, sugar, salt, or other ingredients to the food.
  • Examples of minimally processed foods include things like oatmeal, nut butters, dried fruit, frozen fruits or vegetables, and dried beans.

2) Processed Culinary Ingredients.

  • This includes recipes from restaurants or in-home cooking that add small amounts of oils, fats, sugar, salt, and seasonings to whole foods.

3) Processed Foods

  • This includes foods made in factories by the addition of salt, sugar, oil, or other substances added to whole or minimally processed foods.
  • Examples include tomato paste, canned fruits packed in sugar syrup, cheese, smoked or cured meat.

4) Ultraprocessed Foods

  • These are industrial formulations created in factories mostly or entirely from substances extracted from foods (oils, fats, sugar, starch, and proteins), derived from food constituents (hydrogenated fats and modified starch), or synthesized in laboratories (flavor enhancers, colors, and food additives).
  • Examples include sugar sweetened beverages; sweet or savory packaged snacks; chocolates and candies; burgers, hot dogs, and sausages; poultry and fish nuggets, pastries, cakes, and cake mixes.

Are We Killing Our Children With Kindness?

Obese ChildAs I said above, the important question is, “Are we killing our children with kindness when we give them the sugary drinks, sweets, convenience foods, and fast foods they crave?” After all, the foods we give them when they are young are the ones they are most likely to select when they get older.

Let’s start by looking at how pervasive these foods have become. That was the purpose of the study I am discussing today, and the results of this study are alarming. When they looked at the changes in food consumption by our children between 1999 and 2018:

  • The percentage of calories from ultraprocessed foods increased from 61.4% to 67%. That means:
    • Today, more than 2/3 of the calories our children consume daily come from ultraprocessed foods!
  • The percentage of calories from unprocessed and minimally processed foods decreased from 28.8% to 23.5%. That means:
    • In the span of just 19 years the diets of our children have gone from bad to worse!
  • Ultraprocessed foods were more likely to be consumed away from home and at fast food restaurants.

When the investigators looked at individual categories of ultraprocessed foods:

  • The percentage of calories coming from ready to heat and eat dishes like frozen pizzas and other frozen meals or snacks increased from 2.2% to 11.2%.
  • The percentage of calories coming from sweet snacks and desserts increased from 10.7% to 12.9%.
  • The percentage of calories coming from sugar sweetened beverages decreased from 10.8% to 5.3%.
    • This is potentially the only good news from this study.

The authors concluded. “Based on NHANES data from 1999 to 2018, the estimated energy intake from consumption of ultraprocessed foods has increased among youths in the US and has consistently comprised the majority of their total energy intake.”

“These results suggest that food processing may need to be considered as a food dimension in addition to nutrients and food groups in future dietary recommendations and food policies.”

The Danger Of Ultraprocessed Foods

Fast Food DangersThis study clearly shows that ultraprocessed foods have become the mainstay of our children’s diets. Forget a balanced diet! Forget “Eat your fruits and vegetables”! Our children’s diets have been fundamentally transformed by “Big Food, Inc”.

You might be saying to yourself, “So, they are eating their favorite processed foods. What’s the big deal? How bad can it be?” My answer is, “Pretty Bad”. I chose the title, “Are we killing our children with kindness”, for a reason.

When you look at what happens to children who eat a diet that is mostly ultraprocessed foods:

#1: Their nutrition suffers. When the investigators divided the children into 5 groups based on the percentage of calories coming from ultraprocessed foods, the children consuming the most ultraprocessed food had:

  • Significantly higher intakes of carbohydrates (mostly refined carbohydrates); total fats; polyunsaturated fats (mostly highly processed omega-6-rich vegetable oils); and added sugars.
  • Significantly lower intakes of fiber; protein; omega-3 polyunsaturated fatty acids; calcium; magnesium; potassium; zinc; vitamins A, C, D, and folate.
    • The low intake of fiber means our children will be less likely to have health-promoting friendly bacteria and more likely to have disease-promoting bad bacteria in their guts.
    • The low intake of calcium, magnesium, and vitamin D means they will be less likely to achieve maximum bone density as young adults and will be more likely to suffer from osteoporosis as they age.

#2: They are more likely to become obese. Remember, these are foods that are made in a factory, not grown on a farm.

  • They are high in fat, sugar, and refined carbohydrates. That means they have a high caloric density. Each bite has 2-3 times the calories found in a bite of fresh fruits and vegetables.
  • As I said earlier, the food industry has weaponized our natural cravings for sweet, salty, and fatty foods. They feed their prototypes to a series of consumer tasting panels until they find the perfect blend of sugar, salt, and fat to create maximum craving.
  • And if that weren’t enough, they add additives to create the perfect flavor and “mouth appeal”.
    • It is no wonder that clinical studies have found a strong correlation between high intake of ultraprocessed food and obesity in both children and adults.
    • It is also no wonder that the rate of childhood obesity has almost quadrupled (5% to 18.5%) in the last 40 years.

#3: They are more likely to become sick as adults and die prematurely.

  • Obesity; high intake of fat, sugar, and refined carbohydrates; and low intake of fiber, omega-3s, and essential nutrients all contribute to an increased risk of diabetes, heart disease, and some cancers.
    • It is no wonder that clinical studies have found a strong correlation between high intake of ultraprocessed food and increased risk of diabetes, heart disease, some cancers, and premature death in adults.
    • It is also no wonder a recent study found that type 2 diabetes in children has almost doubled between 2001 and 2017.

The data are clear. When we allow our children to subsist on a diet mostly made up of the ultraprocessed foods they crave, we may be giving them, not love, but a lifetime of obesity and declining health instead. And yes, we may be killing them with kindness.

Instead, my recommendations are:

  • expose your children to a variety of fresh fruits, vegetables, and minimally processed foods at an early age.
  • They will reject some of them, and that’s OK. Introduce others until you find whole, minimally processed foods they like. Reintroduce them to some of the foods they initially rejected as they get older.
  • Don’t keep tempting ultraprocessed foods in your house.
  • You may just succeed in putting your children on the path to a healthier diet and a healthier, longer life.

The Bottom Line

It breaks my heart when I see a mom and her children in the checkout line of a supermarket with a cart filled with sodas, sweets, and convenience foods and devoid of fresh fruits and vegetables – or when I see fast food restaurants packed with parents and their children.

I get it. Our kids love these foods. It seems like an act of kindness to give them the foods they crave. But are we killing our children with kindness?

It is time we asked how much ultraprocessed foods our children are eating and what it is doing to their health. A recent study did just that. When they looked at the changes in food consumption by our children between 1999 and 2018:

  • The percentage of calories from ultraprocessed foods increased from 61.4% to 67%. That means:
    • Today, more than 2/3 of the calories our children consume daily come from ultraprocessed foods!
  • The percentage of calories from unprocessed and minimally processed foods decreased from 28.8% to 23.5%. That means:
    • In the span of just 19 years the diets of our children have gone from bad to worse!

This study clearly shows that ultraprocessed foods have become the mainstay of our children’s diets. Forget a balanced diet! Forget “Eat your fruits and vegetables”! Our children’s diets have been fundamentally transformed by “Big Food, Inc”.

You might be saying to yourself, “So, they are eating their favorite processed foods. What’s the big deal? How bad can it be?” My answer is, “Pretty Bad”. I chose the title, “Are we killing our children with kindness”, for a reason.

When you look at what happens to children who eat a diet that is mostly ultraprocessed foods:

  • Their nutrition suffers.
  • They are more likely to become obese.
  • They are more likely to become sick as adults and die prematurely.

For more details about this study, read the article above.

These statements have not been evaluated by the Food and Drug Administration. This information is not intended to diagnose, treat, cure, or prevent any disease.

Is It Too Late To Change Your Diet?

You Can Improve Your Health At Any Age

Author: Dr. Stephen Chaney

Fast Food ExamplesIf you are like most Americans, your dietary preferences as an adult are based on the foods your family ate while you were growing up.

  • Your favorite foods…
  • Your comfort foods…
  • The foods you always avoid…

…are based on your family heritage, not on your genes. And if you are like most Americans, your diet isn’t healthy.

  • It’s high in fat and cholesterol…
  • It’s high in sugar and refined carbohydrates…
  • It’s high in processed foods…
  • It’s low in whole, unprocessed foods…
  • It’s high in calories, so your waistline keeps growing.

You know your diet isn’t healthy, but you keep coasting along through your 30’s and 40’s until…the unthinkable happens. You are diagnosed with a deadly disease, like heart disease, high blood pressure, or diabetes, and your doctor says that unless you change your diet, you are doomed to a short unhealthy life. You have reached a fork in Food Choicesthe road.

Changing the diet you grew up with, the diet you love, is a daunting task. It’s tempting to think, “Why bother…

  • It’s probably too late to change my diet…
  • The damage has already been done…
  • I can’t reverse it now.”

If this scenario describes you or someone you love, you aren’t alone. There are millions of Americans just like you. You want to know whether changing your diet is worth the trouble. You want to know whether it is too late, or whether you can still change your health for the better.

Most clinical studies don’t answer this question. Most clinical studies do a diet assessment at the beginning of the study and look at health outcomes 20 or 30 years later. If they do more than one diet assessment during the study, the purpose of these assessments is to show that most people stick to the same diet throughout the study.

These studies measure the effect of habitual diets on health outcomes. They tell you that good diets lead to good health outcomes, and bad diets lead to bad health outcomes. But they don’t tell you whether changing your diet from bad to good in your 30’s or 40’s can have a significant effect on your health.

Fortunately, a recent study has answered this question. This study (Y Choi et al, Journal of The American Heart Association, 10e020718, 2021) started with people in their mid-20s. It looked at whether changing their diet from bad to good in their 30s and 40s had any effect on their risk of developing heart disease in their 50s and 60s.

How Was This Study Done?

Clinical StudyThe data for this study were obtained from the CARDIA study (Coronary Artery Risk Development in Young Adults). The study enrolled 4946 young adults (average age = 25, 55% female and 45% male, 50% black and 50% white) and followed them for 32 years (average age of participants at the end of the study = 57).

Diet was assessed by a trained interviewer at year 0, year 7 (average age of participants = 32), and year 20 (average age of participants = 45).

Adherence of the participants to a healthy, plant-centered diet was assessed using an analytical tool called APDQS that divided the foods eaten by the participants into 3 groups based on their known influence on heart disease:

1) Beneficial.

    • These foods included fruit, avocado, beans/legumes, green vegetables, yellow vegetables, tomatoes, other vegetables, nuts and seeds, soy products, whole grains, vegetable oil, fatty fish, lean fish, poultry, moderate alcohol, coffee, tea, and low-fat milk/cheese/yogurt.
    • This is what the investigators considered a plant-centered diet. It encompasses diets ranging from vegan to Mediterranean and DASH.

2) Adverse.

    • These foods included fried potatoes, refined grain desserts, salty snacks, pastries, sweets, high-fat red meats, processed meats, organ meats, fried fish/poultry, sauces, soft drinks, whole fat milk/cheese/yogurt, and butter.
    • This could be considered a typical American diet.

3) Neutral.

    • These foods included potatoes, refined grains, margarine, chocolate, meal replacements, pickled foods, lean meats, shellfish, eggs, soups, and fruit juices.
    • These foods are not the healthiest, but the evidence that they have a negative effect on health disease risk is inconclusive.

The participants were divided into 5 quintiles based on adherence to a plant-centered diet, with quintile 1 having the lowest adherence and quintile 5 having the highest adherence to a plant-centered diet.

The effect of diet on heart disease was measured in two ways:

1) The dietary data from years 0, 7 and 20 were averaged and the effect of average adherence to a plant-centered diet on the risk of developing heart disease by the time the participants were 57 was measured. This is similar to the design of most other studies looking at the effect of diet and heart disease.

2) The effect of an improvement in adherence to a plant-centered diet between ages of 32 and 45 on the risk of developing heart disease by age 57 was also measured. This is what makes this study unique. Basically, the investigators were asking if you could eat a bad diet for 30 years or more and still reduce your risk of heart disease by switching to a good diet by the age of 45. That is the question that millions of American are asking themselves right now.

Is It Too Late To Change Your Diet?

Heart Healthy DietAs I described above this study asked two distinct questions:

1) What effect does your habitual diet have on your risk of developing heart disease?

For this portion of the study, the investigators averaged the dietary data collected in years 0, 7, and 20 of the study and ranked the participants diet from 1 to 5 based on their adherence to a plant-centered diet. When they compared the group with best adherence (group 5) with the group with worst adherence (group 1):

    • Adherence to a plant-centered diet reduced their risk of developing heart disease by 48%.
    • This is consistent with previous studies looking at the beneficial effects of plant-centered diets on heart disease.

2) What effect does changing your diet from bad to good when you are in your 30s or 40s have on your risk of developing heart disease? 

For this portion of the study, the investigators compared the dietary data collected at years 7 and 20 (corresponding to average ages 32 and 45 for the participants) and ranked the participants from 1 to 5 based on improved adherence to a plant-centered diet. When they compared the group with best improvement in adherence (group 5) with the group with worst improvement in adherence (group 1):

    • Improved adherence to a plant-centered diet reduced the risk of developing heart disease by 39%.
    • This answers the questions I posed at the beginning of this article. In short, it is never too late to change your diet for the better.

The authors concluded, “In summary, our study shows that long-term consumption of a nutritionally rich plant-centered diet is associated with a lower risk of heart disease. Furthermore, increased [adherence to a] plant-centered diet in young adulthood is associated with a lower subsequent risk of heart disease throughout middle age, independent of the earlier diet quality” [In short, they are saying that changing to a more plant-centered diet in your 30s and 40s reduces your risk of heart disease.]

You Can Improve Your Health At Any Age

I titled this section, “You Can Improve Your Health At Any Age” for a reason. I wanted to make the point that it is never too late to change your diet, and your health, for the better.

Yes, I realize that the study I described above only shows:

  • The effect of changing to a more plant-centered diet in your 30s and 40s.
  • The benefit of changing to a more plant-centered diet on heart disease outcomes.

However, we have ample evidence that changing to a more plant-based diet at any age is likely to reduce the risk of many diseases. For example:

  • There are multiple reports in the literature of people in their 60s and 70s who had a health scare, changed to a more plant-centered diet, and dramatically improved their health.

While neither type of study can be considered definitive by itself, together they suggest it is never too late to change your diet for the better.

But what changes should you make? As I said above, anything from Vegan to Mediterranean or DASH fits the definition of a plant-centered diet (something I have previously referred to as a primarily plant-based diet).

You could choose the plant-centered diet that best fits your preferences and lifestyle and read books or go online to find details and recipes that will help you transition to that diet…or you could simply:

  • Eat more fruit, avocado, beans/legumes, green vegetables, yellow vegetables, tomatoes, other vegetables, nuts and seeds, soy products, whole grains, vegetable oil, fatty fish, lean fish, poultry, moderate alcohol, coffee, tea, and low-fat milk/cheese/yogurt.
  • Eat less fried potatoes, refined grain desserts, salty snacks, pastries, sweets, high-fat red meats, processed meats, organ meats, fried fish/poultry, sauces, soft drinks, whole fat milk/cheese/yogurt, and butter.
  • Eat these foods in moderation: potatoes, refined grains, margarine, chocolate, meal replacements, pickled foods, lean meats, shellfish, eggs, soups, and fruit juices.

The Bottom Line

If you are like most Americans, you know your diet is unhealthy. But it is the diet you grew up with. It’s the diet you love. So, you keep eating it anyway.

Then you have a wake-up call. You find yourself in your doctor’s office, and your doctor is advising you to change your diet. But giving up the diet you love is difficult, and you wonder if it is worth it. Can you really improve your health significantly by changing your diet now, or is it too late? Has the damage already been done?

Fortunately, a recent study has answered these questions. This study started with people in their mid-20s. And it looked at whether changing their diet from bad to good in their 30s and 40s had any effect on their health in their 50s and 60s. This is what the study found.

  • Improved adherence to a plant-centered diet in their 30s and 40s reduced their risk of developing heart disease in their 50s and 60s by 39%.

While this study was very specific in terms of age and disease, I have discussed in the article above why changing to a more plant-based diet at any age is likely to reduce your risk of multiple diseases. In short, it is never too late to change your diet, and your health, for the better.

For more details about this study and how to change your diet for the better, read the article above.

These statements have not been evaluated by the Food and Drug Administration. This information is not intended to diagnose, treat, cure, or prevent any disease.

Health Tips From The Professor