Omega-3 Supplements Are Safe

Why Do Clinical Studies Disagree? 

Author: Dr. Stephen Chaney 

Pendulum
Pendulum

Six weeks ago, the title of my “Health Tips From the Professor” article was, Are Omega-3 Supplements Safe?” That’s because I was reviewing a study that claimed long-term use of omega-3 supplements increased the risk of atrial fibrillation and stroke. And it had led to headlines like, “Omega-3 Supplements May Increase the Risk of Heart Disease” and “Fish Oil Supplements May Increase The Risk of Stroke and Heart Conditions”.

This week, the title of my article is, “Omega-3 Supplements Are Safe”. I did not choose this title to express my opinion, although I am in general agreement with the statement. I chose that title because the omega-3 pendulum has swung again. The article (M Javaid et al, Journal of The American Heart Association, Volume 13, Number 10: e032390, 2024) I am reviewing today came to the conclusion that omega-3 supplements don’t increase the risk of stroke.

I understand your confusion. You are wondering how scientists can tell you one thing today and the total opposite tomorrow. It is conflicting results like this that cause the public to lose faith in science. And when people lose faith in science they are easily influenced by “snake oil” charlatans on the internet.

So, after I describe this study, I will discuss why scientific studies come up with conflicting results and compare these two studies in detail. That is probably the most important part of this article.

How Was This Study Done?

clinical studyScientists from Freeman Hospital and Newcastle University in the UK conducted a meta-analysis combining the data from 120,643 patients enrolled in 11 clinical trials that evaluated the effects of omega-3 supplementation. The inclusion criteria for this meta-analysis were as follows:

  • The studies were randomized trials that compared omega-3 supplements with placebo or standard treatment. Half the patients received the omega-3 supplement.
  • The patients were either previously diagnosed with heart disease or were at high risk of developing heart disease.
  • The studies reported the incidence of bleeding events.

The study asked whether omega-3 supplementation increased the risk of bleeding events (defined as hemorrhagic stroke, intracranial bleeding, or gastrointestinal bleeding) compared to a placebo or standard treatment.

Omega-3 Supplements Are Safe

Omega-3s And Heart DiseaseThe results were reassuring for omega-3 supplement users. When compared to a placebo or standard treatment, omega-3 supplements.

  • Did not increase the risk of overall bleeding events.
  • Did not increase the risk of hemorrhagic stroke, intracranial bleeding, or gastrointestinal bleeding.
  • Did not increase the risk of bleeding in patients who were also taking blood thinners (Blood thinners reduce the ability of blood to clot and can lead to bleeding events. This study found that adding omega-3 supplements to these drugs did not increase bleeding risk.

But here is where it gets interesting. One of the 11 studies included in the meta-analysis used a high dose (4 grams/day) of Vascepa, a highly purified ethyl ester of EPA produced by the pharmaceutical company Amarin. When the authors analyzed the data from this study alone, they found that Vascepa:

  • Increased the relative risk of bleeding by 50% compared to the control group.
    • While this sounds scary, the absolute risk of bleeding was only increased by 0.6% compared to the control group.
    • I will explain the difference between relative risk and absolute risk below. But for now, you can think of absolute risk as a much more accurate estimate of your actual risk.

The authors of the meta-analysis speculated that the increased bleeding risk associated with the use of Vascepa could be due to the:

  • High dose of EPA (4 gm/day) or…
  • Lack of DHA and other naturally occurring omega-3s in the formulation. The authors said:
    • The effect of DHA on the endothelial lining is weaker than that of EPA (EPA makes the endothelial lining “less sticky” which reduces its ability to trigger blood clot formation. This is one of the mechanisms by which EPA is thought to decrease blood clot formation.)
    • The ability of DHA to inhibit oxidation of Apo-B-containing particles was less sustained than that of EPA (Oxidized Apo-B-containing particles increase the risk of blood clot formation. Inhibition of that oxidation by EPA is another of the mechanisms by which EPA is thought to decrease blood clot formation.)

The authors concluded, “Omega-3 PUFAs [polyunsaturated fatty acids] were not associated with increased bleeding risk. Patients receiving high-dose purified EPA [Vascepa] may incur additional bleeding risk, although its clinical significance is very modest.”

What Is The Difference Between Relative And Absolute Risk?

Question MarkRelative risk is best defined as the percentage increase or decrease in risk compared to the risk found in a control group. Absolute risk, on the other hand, is the actual increase or decrease in risk in the group receiving the intervention.

Relative risk is an excellent tool for identifying risks. However, it magnifies the extent of the risk, so it can be misleading. For example,

  • If the absolute risk of some event occurring in the general population was 40%, a 50% increase in relative risk would increase the absolute risk by 20% (40% X 0.5 = 20%) to give a total risk of 60% (40% + 20%). In this case, both the relative and absolute risk are significantly large numbers.
  • However, if the absolute risk in the general population was 1%, a 50% increase in relative risk would only increase the absolute risk to 1.5%, a 0.5% increase in absolute risk. In this case, the increase in relative risk appears significant, but it is misleading because the absolute increase in risk is a modest 0.5%.
  • The latter resembles the situation in this study when the authors compared bleeding events in patients receiving Vascepa to those receiving a placebo. The absolute risk of bleeding events in the control group was 1.2%. The risk of bleeding events in the Vascepa group was 1.8%. That is a 50% increase in relative risk but only a 0.6% increase in absolute risk.

Why Do Clinical Studies Disagree?

Confusion Clinical StudiesAs I have said many times before, there is no perfect clinical study. Every study has its strengths and its flaws. So, it is perhaps instructive to compare this study and the previous study I reviewed 6 weeks ago. Here are some of the questions I ask when evaluating the strengths and weaknesses of clinical studies.

#1: What kind of study is it?

  • The previous study was an association study. It can only report on associations. It cannot determine cause and effect. Outcomes like atrial fibrillation and strokes could have been caused by unrelated variables in the population studied.
  • The current study was a meta-analysis of 11 randomized controlled clinical trials. Because the only difference between the two groups is that one received omega-3 supplements, it can determine cause and effect.

#2: How many people were in the study?

  • Both studies were very large, so this was not a factor.

#3: How long was the study?

  • The previous study lasted 12 years. The clinical trials within this meta-analysis lasted one to five years. This is a slight advantage for the previous study because it might be better able to detect risks of chronic use of omega-3 supplements.

#4: How were participants selected?

  • Participants in the previous study had no previous diagnosis of heart disease while participants in the current study either had a previous diagnosis of heart disease or were at high risk of developing heart disease.

This difference would be relevant if both studies were looking at the benefits of omega-3 supplements. However, the current study was only looking at the side effects of omega-3 supplements, so this is not an important consideration.

Doctor With Patient#5: How was omega-3 intake monitored?

  • This was a significant flaw of the previous study. Use of omega-3 supplements was determined by a questionnaire administered when the subjects entered the study. No effort was made to determine whether the amount of omega-3s consumed remained constant during the 12-year study.
  • The clinical studies within the current meta-analysis were comparing intake of omega-3 supplements to placebo and monitored the use of the omega-3 supplements throughout the study.

#6: What is the dose-response?

  • This was another serious flaw of the previous study. There was no dose-response data.
  • The current study provided limited dose-response data. From the data they presented it appeared that the risk of bleeding events was only slightly dose-dependent except for the clinical study with the high dose (4 gm/day) EPA-only Vascepa drug. It was a clear outlier, which is why they analyzed the data from that study independently from the other studies.

#7: What outcomes were measured?

  • The only common outcome measured in the two studies was hemorrhagic stroke.
  • The previous study reported that omega-3 supplementation increased the risk of stroke by 5% in the general population. However:
    • That result just barely reached statistical significance.
    • It was a 5% increase in relative risk. The authors did not report absolute risk.
    • It was an association study, so it could not determine cause and effect.
  • The current study found omega-3 supplementation had no effect on the risk of stroke in a population that either had heart disease or were at high risk of heart disease.
    • The exception, of course, was the group taking the high dose Vascepa drug (see below).

Heart Disease Study#8: Was the risk clinically significant?

  • As I said above, the previous study only reported relative risk, which can be misleading. However, absolute risk can be calculated from their data. For example,
    • The risk of developing atrial fibrillation in the group taking omega-3 supplements was 4.4% (calculated from Table 2 of the manuscript). The authors said that represented a 13% increase in relative risk compared to the group not taking omega-3 supplements. This means the absolute (actual) increase in risk is about 0.6%.
    • The risk of stroke in the group taking omega-3 supplements was 1.5% (calculated from Table 2 of the manuscript). The authors said that represented a 5% increase in relative risk compared to the group not taking omega-3 supplements. This means the absolute (actual) increase in risk is about 0.08%.
  • In the current study the increased risk of stroke in the group taking the high-dose (4 gm/day) EPA-only Vascepa drug was 50% for relative risk, but only 0.6% for absolute risk.
    • The authors of the current study argued that, based on absolute risk, the risk of stroke for people taking Vascepa was “clinically insignificant”. I would argue the same is true for the results reported in the previous study and the headlines they generated.

#9: Who sponsored the study? 

  • The previous study was supported by the Bill and Melinda Gates Foundation, an organization that has no obvious interest in the outcome of the study.
  • The current study is sponsored by Amarin, the pharmaceutical company that manufactures and markets Vascepa.
    • However, to their credit, the authors made no effort to hide the negative data about Vascepa.
      • In fact, they highlighted the negative data, noted that the increased bleeding risk with Vascepa was different from the omega-3 supplements studied, and offered possible explanations for why a high potency, EPA-only supplement might increase the risk of bleeding more than a lower potency omega-3 supplement containing both EPA and DHA.
    • They did, however, choose to emphasize the 0.6% absolute increase in bleeding risk rather than the 50% relative increase in bleeding risk. However, as I noted above absolute risk is a more accurate way to report risk, especially when the risk in the control group is only 1.2%.

Perspective On This Comparison:

You may be tempted to conclude that the previous study was garbage. Before you do, let me provide some perspective.

  • The data for that study came from the UK Biobank, which is a long-term collection of data by the British government from over 500,000 residents in the United Kingdom. The data are made available to any researcher who wants to study links between genetic and environmental exposure to the development of disease. However, the data were not collected with any particular study in mind.

This is why omega-3 intake was only determined at the beginning of the study and there was no dose-response information included. The experimental design would have been different if the study were specifically designed to measure the influence of omega-3 supplementation on health outcomes. However, because of cost, the sample size would have been much smaller, which would have made it difficult to show any statistically significant results.

  • Relative risk rather than absolute risk is almost universally used to describe the results of clinical studies because it is a larger number and draws more attention. However, as I described above, relative risk can be misleading. In my opinion, both relative and absolute risk should be listed in every publication.

What Does This Study Mean For You?

ConfusionScientists know that every study has their flaws, so we don’t base our recommendations on one or two studies. Instead, we look at the totality of data before making recommendations. When looking at the totality of data two things stand out.

  • The bleeding risk with Vascepa is not unique. There are some studies suggesting that high dose (3-4 gm/day) omega-3 supplements containing both EPA and DHA may increase bleeding risk, although probably not to the same extent as Vascepa.
  • An optimal Omega-3 Index of 8% is associated with a decreased risk of heart disease and does not appear to increase the risk of atrial fibrillation or bleeding events such as hemorrhagic stroke. And for most people, an 8% Omega-3 Index can be achieved with only 1-2 gm/day of omega-3s.

So, my recommendations are the same as they were 6 weeks ago.

  • Be aware that high-dose (3-4 gm/day) of omega-3 supplements may cause an increased risk of atrial fibrillation and stroke, but the risk is extremely small.
  • Omega-3 supplementation in the 1-2 gm/day range appears to be both safe and effective.
  • I recommend getting your Omega-3 Index determined, and if it is low, increasing your omega-3 intake to get it into the 8% range.

The Bottom Line

A recent meta-analysis concluded that omega-3 supplementation does not increase the risk of bleeding events, including hemorrhagic stroke, intracranial bleeding, and gastrointestinal bleeding.

The exception was the high-dose (4 gm/day), EPA-only drug Vascepa, which increases bleeding risk from 1.2% to 1.8%, a 0.6% increase in absolute risk.

This study contradicts a previous study I shared with you only six weeks ago, so I made a detailed comparison of the strengths and weaknesses of each study.

For more details on these studies and what they mean for you, read the article above.

These statements have not been evaluated by the Food and Drug Administration. This information is not intended to diagnose, treat, cure or prevent any disease.

_____________________________________________________________________________

My posts and “Health Tips From the Professor” articles carefully avoid claims about any brand of supplement or manufacturer of supplements. However, I am often asked by representatives of supplement companies if they can share them with their customers.

My answer is, “Yes, as long as you share only the article without any additions or alterations. In particular, you should avoid adding any mention of your company or your company’s products. If you were to do that, you could be making what the FTC and FDA consider a “misleading health claim” that could result in legal action against you and the company you represent.

For more detail about FTC regulations for health claims, see this link.

https://www.ftc.gov/business-guidance/resources/health-products-compliance-guidance

_______________________________________________________________________

About The Author 

Dr. Chaney has a BS in Chemistry from Duke University and a PhD in Biochemistry from UCLA. He is Professor Emeritus from the University of North Carolina where he taught biochemistry and nutrition to medical and dental students for 40 years.

Dr. Chaney won numerous teaching awards at UNC, including the Academy of Educators “Excellence in Teaching Lifetime Achievement Award”.

Dr Chaney also ran an active cancer research program at UNC and published over 100 scientific articles and reviews in peer-reviewed scientific journals. In addition, he authored two chapters on nutrition in one of the leading biochemistry text books for medical students.

Since retiring from the University of North Carolina, he has been writing a weekly health blog called “Health Tips From the Professor”. He has also written two best-selling books, “Slaying the Food Myths” and “Slaying the Supplement Myths”. And most recently he has created an online lifestyle change course, “Create Your Personal Health Zone”. For more information visit https://chaneyhealth.com.

For the past 45 years Dr. Chaney and his wife Suzanne have been helping people improve their health holistically through a combination of good diet, exercise, weight control and appropriate supplementation.

Does EPA Reduce Migraine Frequency?

What Causes Migraines And The Role Of Omega-3s In Prevention

Author: Dr. Stephen Chaney

MigraineMigraines can be debilitating. And they affect millions of Americans. According to a recent survey 17.1% of women and 5.6% of men in the United States suffer migraine symptoms.

Symptoms range from frequent headaches to visual disturbances, nausea and vomiting, extreme light and sound sensitivity, brain fog, and debilitating pain. Sometimes all a migraine sufferer can do is retreat to a dark, quiet room and wait out the symptoms. This makes it virtually impossible to work, socialize, and interact with family.

For example, work absenteeism due to migraines is thought to cost US businesses up to $13 billion dollars annually. And, of course, there is no way to estimate the psychological cost of lost interactions with family and friends. And people who experience frequent migraines are more likely to suffer from depression, anxiety, and sleep disorders.

Medications can provide some relief from migraine symptoms, but they all have side effects. Various natural approaches for migraine relief have been proposed, but none of them are proven.

What Causes Migraines And The Role Of Omega-3s In Prevention

MigrainesOur understanding of migraines is complicated by the fact there appear to be multiple causes of migraines. It’s almost as if what we call “migraines” are really a variety of diseases with different causes but similar symptoms.

Migraines can be triggered by:

  • Hormonal fluctuations.
  • Weather changes.
  • Foods
    • The top 3 food triggers of migraines are caffeine, red wine, and chocolate.
    • Other common food triggers are artificial sweeteners, foods containing MSG, cured meats, aged cheeses, pickled and fermented foods, frozen foods, and salty foods.
  • Stress
  • Lack of sleep.
  • Certain drugs.
  • Missed meals.

Migraine triggers vary from person to person. And multiple neurophysiological pathways have been proposed to explain how each of these triggers progresses to a full-blown migraine.

To simplify a very complex subject, there are three main factors that influence each of these proposed pathways:

  • Susceptibility to migraines clearly runs in families.
  • 75% of migraine sufferers are women.
  • Inflammation.

Because inflammation plays a strong role in progression and severity of migraines, there has been a strong interest in the use of long-chain omega-3s like EPA and DHA as nutraceuticals to reduce the frequency and severity of migraines.

However, previous studies have had mixed results. Some have suggested that omega-3s reduce the risk of migraines while others have come up empty.

The authors of the current study (H-F Wang, et al, Brain, Behavior, and Immunity 118, 459-467, 2024) postulated that some previous studies failed to find a benefit of omega-3 supplementation because they were too short in duration, used a mixture of omega-3s, or were poorly designed.

They noted that high dose EPA alone had proven to be effective in reducing the risk of heart disease and depression. So, they performed a 12-week randomized, double-blind, placebo-controlled clinical trial with migraine sufferers using 1.8 grams of EPA per day.

How Was This Study Done?

clinical studyThis was a double-blind, placebo-controlled clinical trial, the gold standard for clinical studies. The investigators recruited 70 patients (15 men and 55 women) with episodic migraines (defined as migraines with or without aura occurring fewer than 15 days per month) from the neurology clinic of Kuang Tien General Hospital in Taiwan. The average age of the patients was 39 years old.

The subjects were randomly assigned to use either 1.8 gm/day of EPA or a soybean oil placebo for 12 weeks. Both were formulated with an orange flavoring to hide the taste difference. Neither the patients nor the physicians conducting the study knew who got the EPA and who got the placebo.

The patients filled out an extensive questionnaire about their migraines and related issues at entry into the study and at the end of 12 weeks. They were also asked to maintain headache diaries for at least 4 weeks prior to the study and for every 4 weeks of the 12-week study. They received training from the study coordinator on how to fill out the diaries and were encouraged to contact the coordinator if they had any questions about how to accurately fill out the diary.

The primary outcome of the study was the decrease in migraine frequency from baseline to 12 weeks. The study also assessed changes in:

  • Headache severity.
  • The need to use headache medicines.
  • Migraine-specific disability (The extent to which migraines resulted in disability).
  • Migraine-specific quality of life index (The extent to which migraines affected the quality of life).
  • Anxiety and depression (These are often side effects of chronic migraines).

While some of those outcomes appear to be overlapping, they are all well-established assessments used in migraine research. The questionnaire the doctors used was designed to provide a numerical rating for each of these outcomes.

Does EPA Reduce Migraine Frequency?

omega-3 fish oil supplementAs expected, there were no significant changes in the placebo group. But in the group taking 1.8 gm/day of EPA:

  • Migraine frequency decreased by 60%.
  • Frequency that headache medication was needed decreased by 45%.
  • Headache severity decreased by 14%.
  • Sleep quality increased by 17%, but that increase was not statistically significant.
  • Migraine-related disability decreased by 73%.
  • Migraine-related quality of life improved by 31%.
  • Anxiety and depression decreased by 53%.

These differences were statistically significant for the women in the study, but not for men – probably because of the small number of men in the study.

The study also assessed side effects from EPA supplementation in this group. Side effects were minimal and were not different from the placebo group.

The authors concluded, “High-dose EPA significantly reduced migraine frequency and severity. Improved psychological symptoms and quality of life in migraine patients, and showed no adverse events [effects], suggesting its potential for prophylactic use for migraine patients.”

They went on to say, “The results of this study may not only serve as a valuable reference for future large-scale randomized clinical trials to investigate the optimal dosing and components of omega-3 fatty acids for migraine prevention but also underscore the need for replication of these findings in adequately powered and controlled studies.”

In other words, this study needs to be confirmed by additional studies. And future studies need to determine the optimal dose of EPA and the optimal ratio of EPA to DHA.

What This Study Means For Us And For You

Question MarkThe topic of omega-3s and migraines is of special significance for us. About 40 years ago my wife and I started taking a high purity omega-3 supplement containing both EPA and DHA to control inflammation. We didn’t have noticeable inflammation at the time, but we both had parents who suffered from rheumatoid arthritis and wished to avoid their suffering later in life.

In just a few weeks the migraines my wife had been experiencing for years disappeared. That piqued my interest, so I searched the literature and found several studies showing that omega-3 fatty acids reduce migraine symptoms. I have followed the twists and turns of omega-3 – migraine research ever since, which is how I came across this study.

As for our original purpose in taking an omega-3 supplement, all I can say is that we are now in our 80s, and neither of us suffer from the rheumatoid arthritis that plagued our parents.

And for my wife the disappearance of her migraines was an unexpected side benefit.

This study is a strong validation of the effect of omega-3s on reducing migraine symptoms. However, it is not the end of the story. As the authors said:

  • It needs to be confirmed by larger, well controlled studies.
  • The optimal dose of omega-3s needs to be determined.
  • The optimal ratio of EPA to DHA and possibly other long chain omega-3s needs to be determined.

This study used 1.8 grams/day of pure EPA. My wife takes 3 grams of EPA and 2 grams of DHA each day. But we don’t know whether she would experience the same benefit from a lower dose or whether that is the optimal ratio of EPA to DHA. We do know that EPA and DHA have different health benefits, so we plan to continue taking a supplement that contains both.

And finally, as I said above, it is almost as if what we call migraines are really a cluster of diseases with similar symptoms. There are multiple migraine triggers and multiple proposed explanations of how these triggers lead to full-blown migraines.

So, we shouldn’t think of omega-3s as a magic bullet. Rather, we should think of them as one of many approaches that may provide you with some migraine relief.

The Bottom Line

A recent double-blind, placebo controlled clinical study with migraine sufferers reported that when they were given 1.8 gm/day of EPA for 12 weeks:

  • Migraine frequency decreased by 60%.
  • Frequency that headache medication was needed decreased by 45%.
  • Headache severity decreased by 14%.
  • Migraine-related disability decreased by 73%.
  • Migraine-related quality of life improved by 31%.
  • Anxiety and depression decreased by 53%.

The authors concluded, “High-dose EPA significantly reduced migraine frequency and severity. Improved psychological symptoms and quality of life in migraine patients, and showed no adverse events [effects], suggesting its potential for prophylactic use for migraine patients.”

They went on to say, “The results of this study may not only serve as a valuable reference for future large-scale randomized clinical trials to investigate the optimal dosing and components of omega-3 fatty acids for migraine prevention but also underscore the need for replication of these findings in adequately powered and controlled studies.”

In other words, this study needs to be confirmed by additional studies. And future studies need to determine the optimal dose of EPA and the optimal ratio of EPA to DHA.

For more details about this study and what it means for you read the article above.

These statements have not been evaluated by the Food and Drug Administration. This information is not intended to diagnose, treat, cure, or prevent any disease.

 ______________________________________________________________________________

My posts and “Health Tips From the Professor” articles carefully avoid claims about any brand of supplement or manufacturer of supplements. However, I am often asked by representatives of supplement companies if they can share them with their customers.

My answer is, “Yes, as long as you share only the article without any additions or alterations. In particular, you should avoid adding any mention of your company or your company’s products. If you were to do that, you could be making what the FTC and FDA consider a “misleading health claim” that could result in legal action against you and the company you represent.

For more detail about FTC regulations for health claims, see this link.

https://www.ftc.gov/business-guidance/resources/health-products-compliance-guidance 

____________________________________________________________________________

About The Author 

Dr. Chaney has a BS in Chemistry from Duke University and a PhD in Biochemistry from UCLA. He is Professor Emeritus from the University of North Carolina where he taught biochemistry and nutrition to medical and dental students for 40 years.  Dr. Chaney won numerous teaching awards at UNC, including the Academy of Educators “Excellence in Teaching Lifetime Achievement Award”. Dr Chaney also ran an active cancer research program at UNC and published over 100 scientific articles and reviews in peer-reviewed scientific journals. In addition, he authored two chapters on nutrition in one of the leading biochemistry text books for medical students.

Since retiring from the University of North Carolina, he has been writing a weekly health blog called “Health Tips From the Professor”. He has also written two best-selling books, “Slaying the Food Myths” and “Slaying the Supplement Myths”. And most recently he has created an online lifestyle change course, “Create Your Personal Health Zone”. For more information visit https://chaneyhealth.com.

For the past 45 years Dr. Chaney and his wife Suzanne have been helping people improve their health holistically through a combination of good diet, exercise, weight control and appropriate supplementation.

Do Omega-3s Reduce Osteoarthritis Pain?

How Do Rheumatoid And Osteoarthritis Differ?

Author: Dr. Stephen Chaney 

knee painThis week I am concluding my series on recent omega-3 advances by reviewing a meta-analysis that asks whether omega-3s are beneficial for people with osteoarthritis.

This is an important question because osteoarthritis affects around 32.5 million adults in the United States, and that number is increasing each year as our population ages. Osteoarthritis causes pain and disabilities that can significantly affect quality of life.

And the costs are high. Health care costs due to osteoporosis are around $140 billion/year. And when you include lost workdays, the annual cost is around $468 billion.

There are several medications for reducing symptoms of osteoarthritis. But they each have side effects and some patients cannot tolerate them. Joint replacement surgery is the final resort. But the recovery period is long, and the surgery isn’t always effective. For both reasons many patients with osteoarthritis are looking for natural solutions.

Most of the research on omega-3s and arthritis has been done with patients who have rheumatoid arthritis. Omega-3 supplements have been shown to reduce the pain, swelling of the joints, and inflammation associated with rheumatoid arthritis for many people with the disease.

Based on several dose-response studies, the NIH says the optimal dose is around 2.7 gm/day of EPA + DHA but cautions not to go above 3 gm/day without your doctor’s OK.

The evidence is less clear for omega-3s and osteoarthritis. Some studies suggest that EPA + DHA reduce the pain and inflammation associated with osteoarthritis. But other studies have come up empty. There is no consensus as to whether omega-3s are beneficial for people with osteoarthritis.

When there is disagreement between individual studies, a meta-analysis of the studies is often helpful. By pooling the data from multiple studies, a meta-analysis can smooth out some of the differences between the studies and accumulate enough data points to discover effects that would not have been statistically significant with the smaller data sets from individual studies.

With that in mind, the authors of this manuscript (W Den et al, Journal of Orthopaedic Surgery and Research, 18: 381, 3023) performed a meta-analysis on the data obtained from 9 double-blind, placebo-controlled studies looking at the effect of omega-3s versus a placebo on both pain and joint mobility in osteoarthritis patients.

How Do Rheumatoid And Osteoarthritis Differ?

While the causes of rheumatoid arthritis and osteoarthritis are very different, there are some underlying similarities between the two diseases that suggest both might benefit from omega-3 supplementation.

Rheumatoid Arthritis: Rheumatoid arthritis is thought to be an autoimmune disease, which means that our immune system attacks our cells rather than foreign invaders. It results in chronic inflammation that attacks our joints and can affect other tissues in our body.

It initially affects the lining of our joints which can result in painful, swollen joints. As the disease progresses it can also lead to bone erosion and joint deformity.

Osteoarthritis:Osteoarthritis is generally thought of as a “wear and tear” disease. It is associated with sports injuries and accidents. It is also associated with stress to particular joints due to repeated motions associated with either sports or a job. Obesity also increases wear and tear of the joints because it increases the load on the joints.

The wear and tear causes the cartilage that cushions the junction between bones to deteriorate. Eventually, the cartilage deteriorates to the extent that bone is grinding against bone, which can lead to bone loss and deformities.

Eventually, this results in an inflammation of the joint lining which causes pain and accelerates bone loss. It also causes deterioration of the connective tissue which holds bones together and connects them to muscle.

What Do These Diseases Have In Common? Inflammation is the common factor associated with both rheumatoid and osteoarthritis, and many studies suggest that omega-3s reduce inflammation. In the simplistic description of the two diseases I shared above, it sounds like inflammation occurs much earlier in the disease process for rheumatoid arthritis than for osteoarthritis. This might suggest that omega-3s could be more effective at reducing the symptoms and progression of rheumatoid arthritis than of osteoarthritis.

However, we know that the risk of developing osteoarthritis is increased by chronic inflammation caused by obesity, diseases like diabetes, and/or an inflammatory diet.

How Was This Study Done?

clinical studyThis study was a meta-analysis of 9 double-blind, placebo-controlled clinical studies looking at the effect of omega-3 fatty acids on the pain and loss of joint mobility associated with osteoarthritis. These studies were performed in countries from around the world and included a total of 2,070 participants.

The criteria for inclusion in the meta-analysis were:

1) The articles were written in English.

2) The studies had to be double-blind, placebo-controlled studies (The gold standard for clinical studies).

3) Patients with osteoarthritis were randomly assigned to an intervention group receiving omega-3 supplementation or a placebo group receiving olive oil or another plant oil.

4) The studies measured efficacy and safety outcomes including joint pain (efficacy), joint mobility (efficacy), and treatment-related adverse events (safety).

5) Patients in both the omega-3 and placebo groups were using medications to reduce osteoarthritis symptoms when they were enrolled in the study and were advised to continue with their prescribed medicines for the duration of the study.

The characteristics of the clinical studies included in this meta-analysis were:

  • Sample size (47-1221), Average = 230.
  • Mean age (55.9-68), Average = 63.
  • % men (13.8-45.1%), Average = 31%.
  • Omega-3 (EPA + DHA) dose (350 mg/day – 2,400 mg/day), Average = 1,085 mg/day.

Do Omega-3s Reduce Osteoarthritis Pain?

Question MarkWhen the data from all 9 studies were combined in a single meta-analysis, omega-3 (EPA + DHA) supplementation:

  • Reduced joint pain by 29% compared to the placebo.
  • Increased joint mobility by 21% compared to the placebo.
  • Was not associated with any adverse effects.

The authors concluded, “The results of the meta-analysis indicate that supplementation with omega-3 fatty acids is effective to relieve pain and improve joint function in patients with osteoarthritis, without increasing the risk of treatment-related adverse events. These findings support the use on omega-3 fatty acid supplementation as an alternative treatment for osteoarthritis.”

What Are The Strengths and Limitations Of This Study?

strengths and weaknessesStrengths:

  • All the studies included in this meta-analysis were randomized, double-blind, placebo-controlled studies (the gold standard for clinical trials).
  • All the individual studies that qualified for this meta-analysis found that omega-3 supplementation reduced joint pain and improved joint mobility. This improves confidence that the conclusions of the meta-analysis are correct. The meta-analysis simply improved the statistical significance of this conclusion by combining the data from the individual studies.

Limitations:

  • The biggest limitation was that the individual studies included in this meta-analysis were not performed under the guidelines of the “Fatty Acids and Outcomes Research Consortium” that I discussed in last week’s issue of “Health Tips From the Professor”.
    • The “Fatty Acids and Outcomes Research Consortium” guidelines harmonize the designs of individual studies, which strengthens the meta-analysis.
      • In contrast, the design of the individual studies within this meta-analysis was very different, which prevented the meta-analysis from being able to determine the optimal dose of omega-3 supplements and the minimum time required for omega-3 supplementation to significantly reduce the symptoms of osteoarthritis.
    • The “Fatty Acids and Outcomes Research Consortium” guidelines would have also required these studies to measure tissue levels of omega-3s (something called Omega-3 Index) at the beginning and end of each study. This was not done in any of these studies.
      • This is important because if a patient’s tissue levels of omega-3s at the beginning of the study were already in the optimal range, you would expect little additional benefit from supplementation for that patient.
  • All the individual studies were very small. This limits the ability of these studies to provide definitive conclusions. Unfortunately, this is probably unavoidable.
    • Double blind, placebo-controlled clinical studies are expensive. Only major pharmaceutical companies have the multi-million-dollar budgets required to conduct large double blind, placebo-controlled clinical studies that would provide more definitive evidence that omega-3 supplementation reduces the symptoms of osteoarthritis – and the follow-up studies that would determine the optimal dose of omega-3 supplements and the minimum time required to show an effect of omega-3 supplementation.
  • The patients in these studies were already taking medications to reduce their osteoarthritis symptoms prior to entering the study and were instructed to continue taking those medications during the study. This means that the studies were not asking whether omega-3s alone were effective at reducing osteoarthritis symptoms. They were asking whether omega-3 supplementation provided any additional benefits for people who were already taking medications to reduce symptoms.
    • Unfortunately, this is also probably unavoidable. Current guidelines consider it unethical to withhold the medical “standard of care” from any patient in a clinical trial.

What Does This Study Mean For You?

Questioning WomanThis study, while not definitive, strengthens the evidence that omega-3 supplements containing EPA + DHA may reduce joint pain and improve joint mobility for people with osteoarthritis. It also shows that the doses required to achieve these benefits are not associated with any significant side effects.

While large scale double blind, placebo-controlled clinical studies to confirm these conclusions would be nice, they are unlikely to occur for the reasons discussed above.

The investigators said, “[This study shows that] supplementation of omega-3 fatty acids is effective to relieve pain and improve joint function in patients with osteoarthritis…These findings support the use of omega-3 fatty acid supplementation as an alternative treatment for osteoarthritis.”

This might lead you to believe that omega-3 fatty acids can potentially replace medications for reducing osteoarthritis pain and loss of joint mobility. That may be true, but that is not what the study showed.

Patients in both the omega-3 and placebo group continued their prescribed medicines for osteoarthritis. In reality, the study only shows that omega-3s provide additional benefit for people already taking osteoarthritis medications. The effect of omega-3 supplements by themselves has not been tested and, as I discussed above, is not likely to be tested in the foreseeable future.

However, the use of omega-3 supplements may allow you to reduce or eliminate the medications you are on for osteoarthritis and may delay the need for joint replacement surgery. Of course, if you wish to reduce/eliminate your medications and/or delay joint replacement surgery, I recommend consulting with your doctor first.

Finally, this study provides no information on the optimal dose of omega-3s. Some studies suggest the dose of omega-3s needed to reduce osteoarthritis symptoms may be less than that required to reduce rheumatoid arthritis symptoms, but that evidence is weak.

In the absence of good dose response data, I recommend you aim for an omega-3 index of 8%. You will find a more detailed discussion of the Omega-3 Index and how to use it in last week’s “Health Tips From the Professor” article .

The Bottom Line

A recent meta-analysis looked at the effect of omega-3 supplementation on the pain and lack of joint mobility associated with osteoarthritis.

The study showed that omega-3 (EPA + DHA) supplementation:

  • Reduced joint pain by 29% compared to the placebo.
  • Increased joint mobility by 21% compared to the placebo.
  • Was not associated with any adverse effects.

The authors concluded, “The results of the meta-analysis indicate that supplementation with omega-3 fatty acids is effective to relieve pain and improve joint function in patients with osteoarthritis, without increasing the risk of treatment-related adverse events.”

For more details about the study and what it means for you, read the article above.

These statements have not been evaluated by the Food and Drug Administration. This information is not intended to diagnose, treat, cure, or prevent any disease. 

_____________________________________________________________________________

My posts and “Health Tips From the Professor” articles carefully avoid claims about any brand of supplement or manufacturer of supplements. However, I am often asked by representatives of supplement companies if they can share them with their customers.

My answer is, “Yes, as long as you share only the article without any additions or alterations. In particular, you should avoid adding any mention of your company or your company’s products. If you were to do that, you could be making what the FTC and FDA consider a “misleading health claim” that could result in legal action against you and the company you represent.

For more detail about FTC regulations for health claims, see this link.

https://www.ftc.gov/business-guidance/resources/health-products-compliance-guidance

_______________________________________________________________________

About The Author 

Dr. Chaney has a BS in Chemistry from Duke University and a PhD in Biochemistry from UCLA. He is Professor Emeritus from the University of North Carolina where he taught biochemistry and nutrition to medical and dental students for 40 years.  Dr. Chaney won numerous teaching awards at UNC, including the Academy of Educators “Excellence in Teaching Lifetime Achievement Award”. Dr Chaney also ran an active cancer research program at UNC and published over 100 scientific articles and reviews in peer-reviewed scientific journals. In addition, he authored two chapters on nutrition in one of the leading biochemistry text books for medical students.

Since retiring from the University of North Carolina, he has been writing a weekly health blog called “Health Tips From the Professor”. He has also written two best-selling books, “Slaying the Food Myths” and “Slaying the Supplement Myths”. And most recently he has created an online lifestyle change course, “Create Your Personal Health Zone”. For more information visit https://chaneyhealth.com.

For the past 45 years Dr. Chaney and his wife Suzanne have been helping people improve their health holistically through a combination of good diet, exercise, weight control and appropriate supplementation.

The Good News About Omega-3s And Stroke

How Do Omega-3s Affect The Two Types Of Stroke?

Author: Dr. Stephen Chaney 

strokeI am continuing my series on recent omega-3 breakthroughs. Last week I reviewed a study showing that the omega-3s EPA and DHA lowered blood pressure. Since high blood pressure is a major contributing factor to stroke risk, it only makes sense that EPA and DHA would also decrease the risk of strokes.

In last week’s article I mentioned that high blood pressure is called a silent killer. That is because the symptoms of high blood pressure are easy to ignore and often confused with other illnesses.

For many people the first indication they have a problem is when they have a stroke, which either kills them or forever impacts their quality of life. Let me share some statistics with you.

  • Every 40 seconds someone in the United States has a stroke. One in four adults over the age of 25 will have a stroke in their lifetime.
  • Every 4 minutes someone in the United States dies from a stroke. For many of them sudden death is the first indication they had a health problem.
  • The overall incidence of strokes has increased 60% in the last 20 years with most of that increase (65%) coming from younger adults (ages 20 to 45)
  • The cost of treatment, rehabilitation, and lost wages from stroke was $891 billion in 2020 and is projected to increase to $2.3 trillion in 2050.

Any way you look at it, the personal and financial costs of strokes are immense.

How Do Omega-3s Affect The Two Types Of Stroke?

There are two major kinds of stroke – ischemic stroke, which is caused by a thrombus (blood clot) in the carotid arteries leading to the brain, and hemorrhagic stroke, which is caused by bleeding from small blood vessels in the brain. Ischemic stroke accounts for around 85% of all strokes.

Ischemic strokes are caused by atherosclerosis, the buildup of fatty plaques in the walls of the carotid arteries, followed by the formation of a blood clot which lodges in the narrowed arteries. As you might expect, the prevention and treatment of ischemic strokes are similar to the prevention and treatment of heart attacks.

EPA and DHA have been shown to:

  • Reduce inflammation, which is associated with increased risk of heart disease and stroke.
  • Reduce blood pressure. High blood pressure damages the endothelial lining of blood vessels, which can lead to either build up of atherosclerotic plaque or rupturing of the blood vessels.
  • Reduce platelet aggregation and blood viscosity, which reduces the potential for inappropriate blood clots forming in the carotid arteries.

[When you cut yourself, you want a blood clot to form to stop the bleeding. That is an example of appropriate blood clot formation. However, when a blood clot forms within your arteries, it can prevent blood from reaching surrounding tissues. This is an example of inappropriate blood clot formation.]

  • Reduce the risk of atherosclerotic plaques rupturing. Rupturing of atherosclerotic plaques triggers blood clot formation, so this also decreases the risk of inappropriate blood clots forming in the carotid arteries.

Based on the known effects of EPA and DHA, it is not surprising that they would decrease the risk of ischemic strokes. But what about hemorrhagic strokes? Here the answer is not as clear cut.

  • In a previous clinical study 4 gm/day of purified EPA without DHA was associated with a slightly increased risk of bleeding events but did not increase the risk of hemorrhagic stroke.
  • High doses of pharmaceutical grade EPA have also been associated with a slightly increased risk of atrial fibrillation (Afib). In contrast, previous studies have shown that higher dietary intake of EPA + DHA are associated with a lower risk of Afib.

At present, we don’t know whether the increased risk of bleeding events and Afib are only seen at very high doses of omega-3s or are due to the use of pharmaceutical grade EPA without DHA and any of the other naturally occurring omega-3s.

However, this uncertainty has led some experts to warn that omega-3s may be a two-edge sword. They might increase the risk of hemorrhagic stroke while decreasing the risk of ischemic stroke. This uncertainty was part of the rationale for the study (JH O’Keefe et al, Stroke, 55: 50-58, 2024) I am describing today.

How Was This Study Done?

clinical studyThis study was a meta-analysis of 29 clinical studies looking at the effect of omega-3 fatty acids on the risk of both ischemic and hemorrhagic stroke. These studies were performed in 15 countries from around the world and included a total of 183,291 participants.

One major drawback of many meta-analyses is that each study in the meta-analysis is independently designed. Sometimes the studies are so different that it is difficult to fit them together in a coherent pattern.

A major strength of this meta-analysis is that all the studies were conducted within the “Fatty Acid and Outcome Research Consortium” which specifies a general protocol for the design of each study within that consortium.

For example, estimates of dietary omega-3 intake can be inaccurate and the uptake and utilization of both dietary and supplemental omega-3s vary from person to person. Because of that the Fatty Acid and Outcomes Research Consortium guideline specifies that studies rely on biomarkers of omega-3 levels in the body rather than the amount of omega-3s consumed.

The most frequently used biomarker was the percentage of omega-3s incorporated into the fatty portion of red blood cell membranes. Some studies used other biomarkers, such as the percentage of omega-3s incorporated into the fatty portion of plasma phospholipids or cholesterol-containing phospholipid particles (LDL and HDL for example).

In each case, the percentage of omega-3s is used to calculate something called an “Omega-3 Index”. Previous studies have shown that an Omega-3 Index of 4% or less correlates with a high risk of heart disease, and an Omega-3 Index of 8% or more correlates with a low risk of heart disease. In essence, this study correlated Omega-3 Index with the risk of stroke.

The Fatty Acids and Outcomes Research Consortium harmonized the studies included in this meta-analysis in several other ways, but the use of Omega-3 Index rather than omega-3 consumption was the most important.

Other key characteristics of the studies included in this meta-anaysis were:

  • The average age of participants was 65 years.
  • 82% of the participants were white and 53% were women.
  • The average length of follow-up was 14 years (range = 5-30 years).
  • 10,561 participants (5.8%) suffered a stroke during follow-up (78% ischemic, 11% hemorrhagic, and 11% unspecified).

The Good News About Omega-3s and Stroke 

good newsThe participants in these studies were divided into quintiles based on their Omega-3 Index. When those in the highest quintile (≥ 8%) were compared with those in the lowest quintile (≤ 4%):

  • Risk was reduced by 17% for total stroke and 18% for ischemic stroke. There was no effect on hemorrhagic stroke.

When the effect of individual components of the Omega-3 Index were analyzed:

  • For EPA + DHA risk was reduced by 17% for total stroke and 18% for ischemic stroke. There was no effect on hemorrhagic stroke.
  • For EPA risk was reduced by 17% for total stroke and 18% for ischemic stroke. There was no effect on hemorrhagic stroke. (You are probably starting to detect a pattern).
  • For DHA the results were only slightly different. Risk reduction was 12% for total stroke and 16% for ischemic stroke. There was no effect on hemorrhagic stroke.
  • For DPA, a minor component of the Omega-3 Index, there was no significant effect on total, ischemic, or hemorrhagic stroke.
  • There was a linear dose-response for the effect of EPA, DHA, and the two combined on the reduction in risk for both total and ischemic stroke.

When they looked at subgroups within the analysis, the results were the same for:

  • Age (<65 compared to >65).
  • Gender.
  • Studies that lasted less than 10 years and studies that lasted more than 10 years.
  • The presence of preexisting Afib.
  • The presence of preexisting cardiovascular disease.

The authors concluded, “In summary, this harmonized and pooled analysis of prospective studies showed that long-chain omega-3 levels were inversely associated with risk of total and ischemic stroke but were unrelated to risk of hemorrhagic stroke. Thus, higher dietary intake of DHA and EPA would be expected to lower risk of stroke.”

What Does This Study Mean For You?

Key Takeaways From This Study: The most important takeaway from this study is that reasonable amounts of EPA and DHA from either diet or supplementation are unlikely to increase your risk of hemorrhagic stroke (I will define reasonable below).

That is important to know because this and several other studies show that EPA and DHA decrease the risk of ischemic stroke, which accounts for around 85% of total strokes. This study shows you can reduce your risk of ischemic stroke without fearing that you will increase your risk of hemorrhagic stroke.

This study also reaffirms the importance of relying on Omega-3 Index rather than the dosage of omega-3s in a supplementation. Previous studies have shown there is significant individual variability in the uptake and utilization of dietary omega-3s.

Finally, this study shows you don’t need huge amounts of EPA and DHA to significantly decrease your risk of stroke and cardiovascular disease in general. An Omega-3 Index of ≥ 8% is sufficient to accomplish both.

How Much Omega-3s Do You Need? The authors of this manuscript are experts on the Omega-3 Index, and they estimated that:

  • To raise your Omega-3 Index from 5.4% (the median Omega-3 Index in these studies) to 8% would require about 1,000 mg/d of EPA + DHA.
  • To raise your Omega-3 Index from 3.5% (the lowest Omega-3 Index quintile in these studies) to 8% would require about 1,600 mg/d of EPA + DHA.

These intakes are well within the American Heart Association recommendations for reducing the risk of stroke and cardiovascular disease and are easily achievable from diet and supplementation.

But these estimates are based on averages, and, as I noted above, none of us are average. We differ in our ability to absorb and utilize omega-3s. So, I recommend relying on your Omega-3 Index rather than a dose of omega-3s that’s right for the average person but may not be right for you.

My recommendation would be to start with an Omega-3 test. If you are below 8%, start with the dosage of EPA + DHA the authors of today’s study recommended. Then retest in 6 months and adjust your dose based on the results of that test.

Question MarkHow Much Is Too Much? As I mentioned above, the dose response was linear for Omega-3 Index versus reduction in risk of total and ischemic strokes. So, the question becomes whether you might wish to increase your Omega-3 Index above 8% to achieve an even better reduction in stroke risk.

That is a very personal decision that only you can make but let me share some facts to help you make that decision.

  • As I mentioned above, a previous clinical trial showed an increased risk of bleeding events and Afib at a dosage of 4 gm/day of pure EPA. We don’t know whether that was because of the dose or the use of a formulation that contained only EPA without DHA and other naturally occurring long-chain omega-3s.
  • In that study the increase in bleeding events and Afib was observed in <5% of participants, which suggests that those side effects may be limited to certain high-risk individuals.
    • In this context, high risk might include individuals with preexisting Afib, individuals with a tendency towards excess bleeding, and patients on blood thinning medications.
    • However, only your physician knows all your risk factors. If you have health issues or are on medications, it is always a good idea to check with your physician before changing your omega-3 intake. And if you are considering high-dose omega-3 supplementation or exceeding an 8% Omega-3 Index, I strongly recommend that you consult with your physician first.

The Bottom Line

A recent study looked at the effect of omega-3 levels in red blood cells and other tissues (something called Omega-3 Index) on the risk of various types of stroke.

When individuals with an Omega-3 Index ≥ 8% were compared with those with an Omega-3 Index of ≤ 4%:

  • Risk was reduced by 17% for total stroke and 18% for ischemic stroke (stroke caused by blood clots in the carotid arteries). There was no effect on hemorrhagic stroke (stroke caused by bleeding from small blood vessels in the brain).

The authors concluded, “In summary, this harmonized and pooled analysis of prospective studies showed that long-chain omega-3 levels were inversely associated with risk of total and ischemic stroke but were unrelated to risk of hemorrhagic stroke. Thus, higher dietary intake of DHA and EPA would be expected to lower risk of stroke.”

This study represents an important breakthrough. There is good evidence that increased EPA + DHA from food and/or supplements reduces the risk of ischemic stroke. But some experts have cautioned it might also increase the risk of hemorrhagic stroke. This study puts that fear to rest.

For more details about the study and what it means for you, read the article above.

These statements have not been evaluated by the Food and Drug Administration. This information is not intended to diagnose, treat, cure, or prevent any disease.

_______________________________________________________________________________

My posts and “Health Tips From the Professor” articles carefully avoid claims about any brand of supplement or manufacturer of supplements. However, I am often asked by representatives of supplement companies if they can share them with their customers.

My answer is, “Yes, as long as you share only the article without any additions or alterations. In particular, you should avoid adding any mention of your company or your company’s products. If you were to do that, you could be making what the FTC and FDA consider a “misleading health claim” that could result in legal action against you and the company you represent.

For more detail about FTC regulations for health claims, see this link.

https://www.ftc.gov/business-guidance/resources/health-products-compliance-guidance 

About The Author 

Dr. Chaney has a BS in Chemistry from Duke University and a PhD in Biochemistry from UCLA. He is Professor Emeritus from the University of North Carolina where he taught biochemistry and nutrition to medical and dental students for 40 years.  Dr. Chaney won numerous teaching awards at UNC, including the Academy of Educators “Excellence in Teaching Lifetime Achievement Award”. Dr Chaney also ran an active cancer research program at UNC and published over 100 scientific articles and reviews in peer-reviewed scientific journals. In addition, he authored two chapters on nutrition in one of the leading biochemistry text books for medical students.

Since retiring from the University of North Carolina, he has been writing a weekly health blog called “Health Tips From the Professor”. He has also written two best-selling books, “Slaying the Food Myths” and “Slaying the Supplement Myths”. And most recently he has created an online lifestyle change course, “Create Your Personal Health Zone”. For more information visit https://chaneyhealth.com.

For the past 45 years Dr. Chaney and his wife Suzanne have been helping people improve their health holistically through a combination of good diet, exercise, weight control and appropriate supplementation.

 

How Much Omega-3s Are Best For Blood Pressure?

What Does This Study Mean For You?

Author: Dr. Stephen Chaney

high blood pressureI am continuing my series on recent omega-3 breakthroughs. Today I am going to cover a recent systematic review and meta-analysis (X Zhang et al, Journal of the American Heart Association, 11: e025071, 2022) that analyzed 71 double blind, placebo-controlled clinical studies with 4,973 subjects to determine the optimal dose of omega-3s needed to lower blood pressure.

But first, I will cover why this study is so important.

High blood pressure is called a “silent killer”. For most of us our blood pressure creeps up year after year, decade after decade. Factors like inactivity, obesity, smoking, poor diet, and excess alcohol consumption speed the increase.

Unfortunately, the symptoms of high blood pressure – things like headaches, anxiety, fatigue, and blurred vision – are easy to ignore or confuse with other health problems. And if these symptoms are ignored long enough, the result can be sudden death due to a stroke or heart attack.

Alternately, the consequence could be things like congestive heart failure, kidney failure, vision loss, and memory loss that change your quality of life forever. And once the genie is out of the bottle, it can never be put back again. The damage is permanent.

Omega-3s are often recommended for keeping blood pressure in the normal range. In fact, in 2019 the FDA approved a qualified health claim stating, “Consuming eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) omega-3 fatty acids in food or dietary supplements may reduce the risk of hypertension (high blood pressure) and coronary heart disease.”

But the amount of omega-3s needed to reduce the risk of high blood pressure is uncertain. Previous studies have come up with conflicting results. That is the question the study I will discuss today was designed to answer.

How Was This Study Done?

Clinical StudyThe investigators included 71 studies published between 1987 and 2020 with a total of 4,793 subjects ranging in age from 22 to 86 years in their systematic review and meta-analysis. The studies were all randomized, placebo-controlled trials looking at the effectiveness of omega-3 intake (primarily in the form of food or supplements containing both EPA and DHA) at lowering blood pressure. The placebo used in these studies was olive oil or other vegetable oils.

The studies included in this meta-analysis:

  • Included omega-3 intake from both diet (mackerel, salmon, trout, or tuna) and supplements (fish oil, algal oil, or purified omega-3 ethyl esters).
  • Were conducted in populations from Europe, North America, Australia and other Pacific islands, and Asia.
  • Included subjects with normal blood pressure as well as those with high blood pressure.
  • Ranged in length from 5 to 52 weeks (the average was 10 weeks).
  • Included approximately equal numbers of men and women.

The meta-analysis excluded studies that:

  • Lacked a placebo.
  • Lasted less than 4 weeks.
  • Included blood pressure medications.
  • Included individuals with preexisting cardiovascular events.

The data from these trials was analyzed by a statistical method called a 1-stage cubic spline regression model. This is a recently developed statistical method which the investigators stated was superior to the statistical methods used in previous studies because it reduces the likelihood the results are influenced by investigator bias.

How Much Omega-3s Are Best For Blood Pressure?

Fish Oil and Blood PressureWhen the investigators combined the data from all 71 studies:

  • The maximum reduction in both systolic and diastolic blood pressure was observed between 2g/d and 3 g/d.
  • The dose response was non-linear. Doses above 3 g/d offered no additional benefit.

When the investigators looked at subgroups within the studies:

  • Reduction in blood pressure was seen in both subjects with normal blood pressure and those with high blood pressure.
    • However, reduction in blood pressure and the dose response were different in the two groups.
      • In subjects with normal blood pressure the dose response was non-linear with the optimum reduction between 2 and 3 g/d.
      • In subjects with high blood pressure the reduction in blood pressure was greater and the dose response was linear. The authors recommended a dose ≤ 3 g/d EPA + DHA for people with high blood pressure.
  • Subjects with hyperlipidemia had a greater reduction in blood pressure than subjects with normal lipid levels, and the dose-response was linear.
  • Subjects over the age of 45 had a greater reduction in blood pressure than subjects under the age of 45, and the dose response was linear.
  • There were no significant differences between:
    • Diet versus supplementation.
    • Type of omega-3 supplement (natural fish oil versus purified ethyl ester).
    • Sex.

The authors concluded, “This dose-response meta-analysis demonstrates that the optimal combined intake of omega-3 fatty acids for blood pressure lowering is likely between 2 g/d and 3 g/d. Doses of omega-3 fatty acid intake above the recommended 3 g/d may be associated with additional benefits in lowering blood pressure among groups at high risk of cardiovascular disease.”

I should probably explain the reasoning behind this conclusion.

  • 79% of the studies included in this meta-analysis were performed with subjects who had normal blood pressure. This group had a non-linear reduction in blood pressure with an optimal reduction between 2 and 3 g/d EPA + DHA.
    • Because of its size this group exerted a major influence on the results, which explains why the average results for the entire group showed a non-linear reduction in blood pressure with an optimal reduction between 2 and 3 g/d EPA + DHA.
    • Subjects with normal blood pressure and normal lipid levels are at low risk of cardiovascular disease. The high-risk groups (high blood pressure, high cholesterol and/or triglyceride levels, and over 45) all had a linear dose response suggesting that doses above 3 g/d EPA + DHA may be optimal.

The authors also said, “We found associations [between omega-3 intake and blood pressure] among both hypertensive (high blood pressure) and nonhypertensive (normal blood pressure) groups, suggesting that omega-3 fatty acids could be beneficial for controlling blood pressure even before the onset of hypertension.

This means that the intake of omega3 fatty acids could have implications on a person’s future risk of stroke, ischemic heart disease, and all-cause mortality.”

In other words, they are saying their data suggests that EPA + DHA intakes in the 2-3 g/d range may prevent high blood pressure and the effects it can have on our health.

What Does This Study Mean For You?

Question MarkThe authors of this study claim their data support a dose of 2-3 mg/d of EPA + DHA to prevent a future increase in blood pressure and all its associated health consequences. They also say that an EPA+ DHA dose ≥ 3g/d may be optimal for people who already have high blood pressure and/or other risk factors for heart disease.

I am not an expert on statistics, so I cannot evaluate the author’s claim that their statistical method was superior to the methods used in earlier studies that gave conflicting results.

However, their results are consistent with recommendations of several major health and government agencies.

  • For example, the European Food Safety Authority has said, “An intake of EPA and DHA of ~3 g/d is required to bring out the claimed hypotensive (blood pressure lowering) effect”.
  • The FDA has approved qualified health claims stating that consuming EPA and DHA in foods or dietary supplements may reduce the risk of hypertension (high blood pressure) and coronary heart disease but did not recommend a dose to achieve these results.
  • The American Heart Association has recommended ~ 1 g/d of EPA + DHA for patients with documented coronary heart disease and 2–4 g/day of EPA + DHA to lower triglycerides.
  • And the American Heart Association features this article on their website with the headline, “Consuming about 3 grams of omega-3 fatty acids a day may lower blood pressure.”

When we contrast that with the fact that the average American gets less than 100 mg/d of EPA + DHA from their diet it is obvious that many Americans would likely benefit from increasing the amount of EPA and DHA in their diet.

The Rest Of The Story

ProfessorThere are four additional points I would like to make:

  • In trying to explain the differences between dose response in high and low risk subjects, the authors said, “There could be mechanistic differences in bioavailability and efficacy of omega-3 fatty acid intake in these populations.”

In last week’s “Health Tips From the Professor” article I reviewed a study that measured individual differences in the utilization of EPA and DHA and concluded that a blood measurement called Omega-3 Index was a more reliable indicator of health outcomes than the dose of omega-3s consumed.

For that reason, I recommend personalizing your dose of EPA + DHA to reach an Omega-3 Index of 8%, which appears to be optimal for heart health and provides significant blood pressure reduction. This is an iterative process which will require frequent measurement of your omega-3 index and adjustment of EPA + DHA dose until you find the level of EPA + DHA supplementation you need to achieve an Omega-3 Index of 8%.

  • This study and similar studies measure the health benefits of the long chain omega-3 fatty acids EPA and DHA. Short chain omega-3s from nuts, seeds, and plant oils are healthy, but their conversion to EPA and DHA is very inefficient.
  • Both the FDA and American Heart Association recommend that doses of EPA + DHA above 3 g/d should be taken under a physician’s supervision because high doses can cause bleeding problems.

This is another reason for basing your intake of EPA + DHA on Omega-3 Index rather than on the dose recommended by a clinical study. Based on dozens of clinical studies, an Omega-3 Index of 8% appears to be safe unless you have a bleeding disorder or are on a blood-thinning medication (see below).

  • If you are on a medication to thin your blood, you should consult with your physician before increasing or decreasing your omega-3 intake because changes in dietary omega-3s can affect the optimal dose of medication they prescribe.

The Bottom Line 

A recent study looked at the dose of EPA + DHA needed to lower blood pressure.

  • The study concluded that a dose of 2-3 mg/d of EPA + DHA was optimal for preventing a future increase in blood pressure and all its associated health consequences.
  • It also concluded that an EPA+ DHA dose ≥ 3g/d was optimal for lowering blood pressure in people who already have high blood pressure and/or other risk factors for heart disease.
  • Based on previous studies, I recommend optimizing your omega-3 index rather than relying on a dose of EPA + DHA that may not be right for you.

For more details about this study and what it means to you read the article above.

These statements have not been evaluated by the Food and Drug Administration. This information is not intended to diagnose, treat, cure, or prevent any disease.

 ______________________________________________________________________________

My posts and “Health Tips From the Professor” articles carefully avoid claims about any brand of supplement or manufacturer of supplements. However, I am often asked by representatives of supplement companies if they can share them with their customers.

My answer is, “Yes, as long as you share only the article without any additions or alterations. In particular, you should avoid adding any mention of your company or your company’s products. If you were to do that, you could be making what the FTC and FDA consider a “misleading health claim” that could result in legal action against you and the company you represent.

For more detail about FTC regulations for health claims, see this link.

https://www.ftc.gov/business-guidance/resources/health-products-compliance-guidance 

About The Author 

Dr. Chaney has a BS in Chemistry from Duke University and a PhD in Biochemistry from UCLA. He is Professor Emeritus from the University of North Carolina where he taught biochemistry and nutrition to medical and dental students for 40 years.  Dr. Chaney won numerous teaching awards at UNC, including the Academy of Educators “Excellence in Teaching Lifetime Achievement Award”. Dr Chaney also ran an active cancer research program at UNC and published over 100 scientific articles and reviews in peer-reviewed scientific journals. In addition, he authored two chapters on nutrition in one of the leading biochemistry text books for medical students.

Since retiring from the University of North Carolina, he has been writing a weekly health blog called “Health Tips From the Professor”. He has also written two best-selling books, “Slaying the Food Myths” and “Slaying the Supplement Myths”. And most recently he has created an online lifestyle change course, “Create Your Personal Health Zone”. For more information visit https://chaneyhealth.com.

For the past 45 years Dr. Chaney and his wife Suzanne have been helping people improve their health holistically through a combination of good diet, exercise, weight control and appropriate supplementation.

Can You Slow The Aging Process?

A Holistic Approach To Living Healthy Longer

Author: Dr. Stephen Chaney 

Fountain Of YouthEver since Ponce de Leon’s famed 1513 expedition, people have been searching for the proverbial “Fountain of Youth”.

There have been hucksters selling pills and potions to reverse the aging process. Most of them didn’t work. They were no better than snake oil.

There have been legitimate scientists investigating the effect of supplements, diets, and lifestyle on the aging process. Most of these studies have come up empty.

In this study (M Gagesch et al, Journal of Frailty And Aging, 12: 71-77, 2023) the authors hypothesized that a holistic approach might be better than individual interventions. They asked whether a combination of vitamin D3 supplementation, omega-3 supplementation, and exercise might be more effective at slowing the aging process than any one of them alone.

There was good reason for choosing each of these interventions:

  • Low 25-hydroxyvitamin D levels have been associated with frailty in several studies. But association studies do not prove cause and effect, and no randomized, placebo control studies have measured the effect of vitamin D supplementation on frailty.
  • Omega-3 fatty acids have been linked to skeletal muscle health, and some studies have suggested omega-3 supplementation may improve muscle function in older adults.
  • A recent study has reported that a supervised exercise program reduced frailty in older adults. The authors wanted to see if the same was true for unsupervised, at-home exercise program.

How Was This Study Done?

clinical studyThe data from this study were collected as part of the DO-HEALTH study, a 3-year, double-blind, randomized, placebo-controlled clinical trial designed to identify interventions that support healthy aging in European adults aged 70 and older.

Initially, 2,157 healthy, community-dwelling adults were enrolled from five countries (Switzerland, Germany, Austria, France, and Portugal). They were examined in clinical centers at the beginning of the study and years 1, 2, and 3, with phone follow-up at 3-month intervals.

Aging was measured by something called the frailty index. At each clinic visit the participants were evaluated in five areas:

  1. Weakness was measured as grip strength. Weakness was defined as being in the lowest quintile of grip strength for someone their age and gender.

2) Fatigue was defined as a positive answer to the question, “In the last month have you had too little energy to do the things you wanted to do?”

3) Involuntary weight loss was defined as >5% weight loss within a year.

4) Low gait speed was defined as <2 ft/sec walking speed.

5) Low activity level was defined as a response of, “Less than once a week” to the question, “How often do you engage in activities that require a low or moderate level of energy such as gardening, cleaning the car, or going on a walk?”

    • Participants with 0 positive items were classified as robust.
    • Those with 1 or 2 positive items were classified as pre-frail.
    • Those with 3 or more positive items were classified as frail.

Only those participants from the DO-HEALTH study classified as robust at the first clinical visit (1,137 participants) were included in this study. The study measured how many of them became pre-frail or frail during the average follow-up of 2.9 years.

The interventions were:

  • Capsules containing a total of 2,000 IU/day of vitamin D3 with sunflower oil capsules as a placebo.
  • Capsules containing a total of 1,000 mg of EPA and DHA in a 1:2 ratio with a sunflower oil capsule as a placebo.
  • Exercise consisting of an unsupervised strength-training routine for 30 minutes, 3 times per week.
  • In this case the control was an unsupervised joint-flexibility routine for 30 minutes, 3 times per week.

The interventions were done individually, two together (vitamin D + omega-3, vitamin D + exercise, omega-3 + exercise), and all three together (vitamin D + omega-3 + exercise).

The results were corrected for age, sex, and low-trauma falls in the preceding 12 months.

Finally, the study measured blood 25-hydroxyvitamin D levels and omega-3 levels at each office visit. They found:

  • 28% of the participants were deficient in vitamin D at the beginning of the study.
  • The interventions gave the expected increase in vitamin D and omega-3 status.

Can You Slow The Aging Process?

Older Couple Running Along BeachAt the end of 3 years:

  • 61.2% of the participants had declined from robust health to the pre-frail category.
  • 2.6% of the participants had declined from robust health to the frail category.

[Note: The terms “pre-frail” and “frail” are measures of aging which I have described above.]

The number of participants in the frail category were too small to obtain a statistically significant measure of the effects of vitamin D, omega-3s, and exercise on frailty, so I will only discuss the results measuring their effect on pre-frailty in this review. These results are:

  • None of these interventions had a statistically significant effect on aging by themselves, as measured by the transition from robust health to pre-frailty.
  • None of these interventions had a statistically significant effect on aging when combined in pairs, although the vitamin D3-omega-3 pair came close to significance (31% reduction in pre-frailty with a probability of 94% (probabilities of 95% and above are considered significant.))
  • However, the combination of vitamin D3, omega-3s, and exercise reduced the risk of aging by 39%, which was statistically significant (96% probability).

The authors concluded, “Robust, generally healthy and active older adults without major comorbidities [diseases], may benefit from a combination of high-dose, supplemental vitamin D3, marine omega-3s, and SHEP [unsupervised strength training] with regard to the risk of becoming pre-frail over 3 years.”

A Holistic Approach To Living Healthy Longer

holistic approachThis study was a double-blind, placebo-controlled study, which is the gold standard for clinical studies. It was also unusually large (1,137 participants) and long (3 years) for this kind of study.

It was also much better than most double-blind, placebo-controlled studies in that it included three interventions (vitamin D3 supplementation, omega-3 supplementation, and exercise) and looked at their effect on aging individually, in pairs, and all three together.

One take-home lesson from this study was that a holistic approach that included all 3 interventions was superior to any one of these interventions alone or in pairs.

But the most important take-home lesson is this:

If you asked your doctor what you should do to slow the aging process, he or she would probably tell you, “Exercise may help, but forget supplementing with extra vitamin D or omega-3s. They have no proven benefits.”

They would be correct based on studies of each of these interventions individually. And the studies they might quote would be double-blind, placebo-controlled studies, the gold standard of clinical studies.

But would that be the best advice. Clearly not. The best advice would be to follow a holistic approach and use all 3 interventions together.

Unfortunately, this is true for most studies of supplementation. Supplements are tested individually, as if they were “magic bullets”. And most of these studies come up short. They fail to find a significant benefit of supplementation.

Supplements are almost never tested holistically in combination with each other and other interventions, but that’s where the “magic” really happens.

If you are a regular reader of “Health Tips From The Professor”, this should come as no surprise to you. I have often shared the Venn diagram on the upper left and said that the sweet spot is when two or more of these interventions overlap.

Of course, this is the first study of its kind. More studies are needed. More importantly, we need studies to fill in the other parts of the Venn diagram. We need to ask about the effect of diet and obesity on aging. For example:

  • If we add a healthy diet to vitamin D, omega-3s, and exercise, can we reduce aging even more dramatically?
  • Is the effort it takes to lose excess weight worth it? Does adding it to diet, supplementation, and exercise reduce the aging process even more?

Of course, I think the answer to those questions is an unequivocal, “Yes”. Multiple studies have shown that both a healthy weight and a healthy diet help you live healthier longer.

But I am a scientist. Neither diet nor weight loss have been tested in combination with supplementation and exercise. I would like to see studies combining all these modalities in a single double-blind, placebo-controlled experiment.

So, what does this mean for you? If you want to slow the aging process, if you are in search of your personal “Fountain of Youth…

  • This study suggests that vitamin D3 supplementation (2,000 IU/day), omega-3 supplementation (1,000 mg of EPA + DHA), and an exercise program that emphasizes strength training can help you slow the aging process.

But that is only the beginning. I also recommend…

  • Including a healthy diet and a healthy weight in your anti-aging regimen.
  • Making sure your diet has enough protein and leucine, since older adults need more of both to maximize the benefits of strength training.
  • Including other supplements as evidence for their benefit in slowing the aging process becomes available.

The Bottom Line 

A recent double-blind, placebo-controlled study looked at the effect of vitamin D3 supplementation (2,000 IU/day), omega-3 supplementation (1,000 mg/day EPA + DHA in a 1:2 ratio), and an unsupervised strength training program on the aging process.

It differed from most other double-blind, placebo-controlled studies in that:

  • It was larger (1,137 participants) and longer (3 years) than most.
  • More importantly, each intervention was tested individually, in pairs, and all 3 together.

The study found that:

  • None of these interventions had a statistically significant effect on aging by themselves.
  • None of these interventions had a statistically significant effect on aging when combined in pairs, although the vitamin D3-omega-3 pair came close to significance.
  • However, the combination of vitamin D3, omega-3s, and exercise reduced the risk of aging by a statistically significant 39%.

One take-home lesson from this study was that a holistic approach that included all 3 interventions was superior to any one of these interventions alone or in pairs.

But the most important take-home lesson is this:

If you asked your doctor what you should do to slow the aging process, he or she would probably tell you, “Exercise may help, but forget supplementing with extra vitamin D or omega-3s. They have no proven benefits.”

They would be correct based on studies of each of these interventions individually. And the studies they might quote would be double-blind, placebo-controlled studies, the gold standard of clinical studies.

But would that be the best advice? Clearly not. The best advice would be to follow a holistic approach and use all 3 interventions together.

Unfortunately, this is true for most studies of supplementation. Supplements are tested individually, as if they were “magic bullets”. And most of these studies come up short. They fail to find a significant benefit of supplementation.

Supplements are almost never tested holistically in combination with each other and other interventions, but that’s where the “magic” really happens.

For more information on this study and my recommendations on how to slow the aging process read the article above.

These statements have not been evaluated by the Food and Drug Administration. This information is not intended to diagnose, treat, cure, or prevent any disease.

 ___________________________________________________________________________

My posts and “Health Tips From the Professor” articles carefully avoid claims about any brand of supplement or manufacturer of supplements. However, I am often asked by representatives of supplement companies if they can share them with their customers.

My answer is, “Yes, as long as you share only the article without any additions or alterations. In particular, you should avoid adding any mention of your company or your company’s products. If you were to do that, you could be making what the FTC and FDA consider a “misleading health claim” that could result in legal action against you and the company you represent.

For more detail about FTC regulations for health claims, see this link.

https://www.ftc.gov/business-guidance/resources/health-products-compliance-guidance

Is Vegan Breast Milk Sufficient?

What Can Vegan Moms Do?

Author: Dr. Stephen Chaney 

breastfeedingA whole food vegan diet is incredibly healthy:

  • Vegans are less likely to be overweight than the general population.
  • Vegans have a lower risk of diabetes, heart disease, cancer, hypertension, and several other diseases than the general population.
  • Whole food vegan diets are anti-inflammatory, so they lower the risk of autoimmune diseases and the “itis” diseases.

But vegan diets leave out meat, dairy, and eggs. Vegetarians without proper dietary advice are at high risk of inadequate intake of vitamin B12, vitamin D, iron, iodine, calcium, and DHA. And, of course, the risk of inadequate intake is even greater for vegans than it is for vegetarians, who may include some dairy and eggs in their diet.

So, it is legitimate to ask whether a vegetarian or vegan diet is sufficient for pregnancy and lactation. The short answer is that they can be if they are properly designed and properly supplemented.

But that is not an easy task, as evidenced by a recent study (N Ureta-Velasco et al., Nutrients 15:1855, 2023) comparing the breast milk of omnivore moms with the breast milk of vegetarian and vegan moms.

How Was This Study Done?

clinical studyThis study was done with 92 omnivore moms, 9 vegetarian moms (5-ovo-vegetarian and 4 lacto-ovo-vegetarians) and 11 vegan moms between August 2017 and February 2020 at the Regional Human Milk Bank at the “12 de Octubre” University Hospital in Madrid, Spain. The vegetarian and vegan moms were grouped together for data analysis.

On Day 0 of the study, participants went to the regional milk bank for blood and urine samples to determine nutritional status, a screening to determine health and socioeconomic status, and for food frequency questionnaire to characterize their habitual diet.

On days 1-5, they returned to the regional milk bank with a 24-hour diet recall of the previous day and to express 25 ml of breast milk to determine its nutrient content. On day 6, they returned to express a larger sample of breast milk to determine its lipid content (including EPA and DHA).

Note: Both the food frequency questionnaire and the 24-hour dietary recalls included nutrients derived from supplements.

What Did The Study Show About Dietary Intake of Key Nutrients?

Questioning WomanThis was a comprehensive study, so I will just cover the highlights here:

Birth Weight: Compared to the children of omnivore moms, the children of vegetarian/vegan moms were more likely to:

  • Have less weight gain during pregnancy (2 pounds less on average).
  • Be underweight at birth (60% of babies born to vegetarian/vegan moms were in the underweight category of birth weights versus 25% for babies born to omnivore moms).

This is probably because vegetarian/vegan moms:

  • Consumed slightly fewer calories per day (2146 versus 2319).
  • Consumed significantly less protein (67 g/d versus 96 g/d).
  • Were 10 times more likely to be underweight prior to pregnancy (10% versus 1%).

This is a concern because low birth weight increases the risk of physical and mental health issues later in life.

Supplement Use: The nutrients of greatest concern in a vegetarian/vegan diet are vitamin B12, vitamin D, iron, iodine, calcium, and DHA. For all these nutrients except DHA, this message appears to have gotten out to most vegetarian/vegan mothers because they were compensating for these potential deficiencies through supplementation.

For example, when they looked at average daily intake of these key nutrients from supplements, they found:

Nutrient Vegetarian/Vegan Moms Omnivore Moms
Vitamin D 1,080 IU (27mcg) 240 IU (6 mcg)
Folic acid 400 mcg 280 mcg
Vitamin B12 312 mcg 2 mcg
Calcium 566 mg 164 mg
Iron 40 mg 29 mg
DHA 100 mg 180 mg

However, that doesn’t tell the whole story, because not all vegetarian/vegan moms took supplements. When the investigators looked at the percent taking supplements, this is what they found.

Nutrient Vegetarian/Vegan Moms Omnivore Moms
Vitamin D 50% 50%
Folic acid 35% 61%
Vitamin B12 85% 60%
Calcium 15% 37%
Iron 25% 43%
DHA 10% 16%

Dietary Intake (Food + Supplements): The extra supplementation clearly played an important role because when the investigators looked at the overall intake from food and supplements, they found:

Nutrient Vegetarian/Vegan Moms Omnivore Moms
Vitamin D 224 IU (5.6 mcg) 432 IU (10.8 mcg)
Folate + Folic acid 668 mcg 473 mcg
Vitamin B12 258 mcg 6.9 mcg
Calcium 910 mg 1148 mg
Iron 31 mg 25 mg
DHA 110 mg 380 mg

Again, this doesn’t tell the whole story. Some women didn’t supplement. When the investigators looked at the percentage of women getting an inadequate intake of key nutrients from food plus supplements they found:

Nutrient Vegetarian/Vegan Moms Omnivore Moms
Vitamin D 75% 88%
Folate + Folic acid 0% 39%
Vitamin B12 25% 0%
Calcium 45% 40%
Iron Not reported Not reported
DHA Not reported Not reported

These results clearly show the need for supplementation. While the average intake from food plus supplements looked good, there were a significant percentage of women who weren’t getting adequate intake of key nutrients because they didn’t supplement.

The exceptions were folate + folic acid for vegetarian/vegans because their diet is rich in folate-containing foods and vitamin B12 for omnivores because their diet is rich in foods containing B12.

Is Vegan Breast Milk Sufficient?

Of course, the proof is in the pudding. When the investigators looked at the nutrient content of breast milk, this is what they found:

Nutrient Vegetarian/Vegan

Moms

Omnivore

Moms

Reference

Value*

Vitamin D3 1.1 mcg/L 3.4 mcg/L 0.25-2 mcg/L
Folate + Folic acid 19 mcg/L 20 mcg/l 80 mcg/L
Vitamin B12 0.74 mcg/L 0.65 mcg/L 0.5 mcg/L
Calcium 83 mg/L 99 mg/L 200-300 mg/L
Iron Not reported Not reported
DHA 0.15 g/100 g fat 0.33 g/100 g fat 0.35 g/100 g fat

*Reference values established by WHO

  • The chief difference between breast milk from vegetarian/vegan moms was in DHA levels.
  • That’s because the diet of vegetarians and vegans contains very little DHA, and very few vegetarian/vegan women in this study supplemented with DHA.
  • This study also found that breast milk from both vegetarian/vegan moms and omnivore moms was low in folate + folic acid, calcium, nicotinamide, and selenium. They said that requires follow-up in future studies.

The authors concluded, “The most important contribution of this study is the detailed and comprehensive description of micronutrients and lipids in human milk from omnivore milk donors and vegetarian/vegan women…Of particular concern is the lower DHA content in the milk of our vegetarian/vegan group. However, raising awareness and administering proper supplementation could bridge the gap, as has been the case with vitamin B12.”

What Can Vegan Moms Do?

This study emphasizes the importance of careful planning and supplementation during pregnancy and lactation if you are a vegetarian or vegan mom.

For example, the vegetarian/vegan women in this study were more likely to have low birthweight babies, and low birthweight infants are at risk for health issues later in life. That means:

  • Careful planning is required to select calorie- and protein-rich plant foods.
  • A high-quality plant protein supplement can be a great help.

Supplementation is particularly important during lactation to assure your breast milk adequately nourishes your newborn baby. For example, in this study:

  • The vitamin B12 level in the breast milk from vegetarian/vegan moms was adequate because 85% of them supplemented with vitamin B12.
  • The DHA level in the breast milk from vegetarian/vegan moms was inadequate because only 10% of them supplemented with DHA.
  • The authors of this study recommended that vegetarian and vegan moms consume at least 200 mg of DHA from algal sources while they are breastfeeding.

However, finding a prenatal supplement that provides all the nutrients you need prior to pregnancy, during pregnancy, and while breastfeeding is challenging. I gave you 7 tips for choosing the best prenatal supplements in a previous “Health Tips From the Professor” article.

The Bottom Line 

A recent study asked whether the breast milk of vegetarian and vegan moms was sufficient for the needs of their newborn babies. The study found that:

  • Folate levels in their breast milk were sufficient because the diets of vegetarians and vegans contain many folate-rich foods.
  • Vitamin B12 levels in their breast milk were sufficient because 85% of the vegetarian and vegan women in this study supplemented with vitamin B12.
  • DHA levels in their breast milk were insufficient because the diets of vegetarian and vegan women are very low in DHA, and only 10% of the women in this study supplemented with DHA.
  • The authors of this study recommended that vegetarian and vegan moms consume at least 200 mg of DHA from algal sources while they are breastfeeding.

This study reinforces the need for supplementation during lactation to assure your breast milk adequately nourishes your newborn baby.

However, finding a prenatal supplement that provides all the nutrients you need prior to pregnancy, during pregnancy, and while breastfeeding is challenging. I gave you 7 tips for choosing the best prenatal supplement in a previous “Health Tips From the Professor” article.

For more information on this study read the article above.

These statements have not been evaluated by the Food and Drug Administration. This information is not intended to diagnose, treat, cure, or prevent any disease.

___________________________________________________________________________

My posts and “Health Tips From the Professor” articles carefully avoid claims about any brand of supplement or manufacturer of supplements. However, I am often asked by representatives of supplement companies if they can share them with their customers.

My answer is, “Yes, as long as you share only the article without any additions or alterations. In particular, you should avoid adding any mention of your company or your company’s products. If you were to do that, you could be making what the FTC and FDA consider a “misleading health claim” that could result in legal action against you and the company you represent.

For more detail about FTC regulations for health claims, see this link.

https://www.ftc.gov/business-guidance/resources/health-products-compliance-guidance

 

 

Is Your Prenatal Supplement Adequate?

What Should You Look For In A Prenatal Supplement?

Author: Dr. Stephen Chaney

pregnant women taking omega-3You want to do the best for your unborn child. So, you try to find the best prenatal supplement. You may ask your doctor to recommend a prenatal supplement. You may ask your best friend what supplement she used when she was pregnant. Or perhaps you scan online reviews of prenatal supplements by random dietitians or nutrition gurus to select the “best” prenatal supplements.

Then you read the supplement label or the company’s website and see claims like:

  • “Supports optimal nutrition before, during, and after pregnancy”
  • “Packed with 16 nutrients to support fetal development, immunity, energy metabolism, and more”
  • “Concise prenatal formula supports both bone and brain development”

It sounds so good. You think you have found the perfect prenatal supplement. “Right?”

Perhaps not. A recent study (JB Adams et al, Maternal Health, Neonatology, and Perinatology, 8:4, 2022) did an in-depth review of prenatal supplement recommendations and how well prenatal supplements on the market met those recommendations.

The results were not encouraging. The authors concluded, “[Our] analysis found that prenatal supplements vary widely in content, often only contain a subset of essential vitamins, and the levels were often below…recommendations.”

In other words, their study found that most prenatal vitamins may not be adequate to support your needs and the needs of your child through pregnancy and breastfeeding.

I know this is likely to be a topic of great concern for many of you. So, I will examine the study in detail and give you some guidelines for selecting the perfect prenatal supplement.

How Was This Study Done?

clinical studyThis study can be divided into two parts.

#1: What Should The Ideal Prenatal Supplement Contain:

The authors started off by reevaluating the optimal recommendations for prenatal supplements. They reviewed over 200 articles, focusing on articles that:

  • Provided insight into optimal dosage [of essential nutrients] such as treatment studies on the effects of different doses on outcomes and biomarkers.
  • Were larger, more rigorously designed, such as randomized double-blind placebo-controlled studies.

The studies included in their review fell into three categories:

  1. The association of low levels of vitamins with health problems [during pregnancy and in the child after birth].

2) Studies on the changes in [blood] vitamin levels during pregnancy [when the mother is either] un-supplemented or supplemented (The blood level of many vitamins decreases dramatically during pregnancy without supplementation).

3) Clinical trials on the effect of vitamin supplementation on health problems [during pregnancy].

They used these data to create their recommendations for what an ideal prenatal supplement should contain. In some cases, their recommendations were higher than current RDA recommendations for pregnant women.

#2: How Do Currently Available Prenatal Supplements Compare With Their Recommendations For The Ideal Supplement?

For this part of the study, they created a comprehensive list of the nutrients provided by 188 prenatal supplements currently on the market using databases created by the National Institutes of Health. Where these databases were outdated, the nutrient list for that supplement was updated using information on the manufacturer’s websites or labels on retail websites such as Amazon.

Finally, they compared the nutrient content of all 188 prenatal supplements with their recommendations for the ideal prenatal supplement.

Is Your Prenatal Supplement Adequate?

Questioning WomanThere are four points I wish to make before I review the results of this study.

  1. I suspect you are most interested in finding out how prenatal supplements on the market compare with their recommendations for an ideal supplement, so that is what I will discuss below.

2) As I mentioned above, some of their recommendations exceed the current Daily Value (DV) recommendations for pregnant and lactating women. I will point that out whenever it significantly affects the comparisons.

3) The authors of this article made the point that most women going on a prenatal supplement will probably discontinue taking their multivitamin supplement. Thus, their recommendations included nutrients commonly included in multivitamin supplements. This is a valid point, and something you should consider when choosing a prenatal supplement. However, in my discussion below I will focus on the nutrients that are universally recognized as important for pregnancy and lactation.

4) The authors focused on prenatal supplements that had less than the recommended amount of essential nutrients. They did not ask how many of those supplements had excessive amounts of certain nutrients. In my non-systematic review of prenatal supplements, I found several that had doses of some nutrients in thousands of percent of the DV recommendations. In my opinion, this is potentially unsafe for pregnancy and nursing. I will cover this topic in more detail in my discussion.

With that in mind, here are the results of their review.

Vitamins:

When you look at vitamins that have long been recognized as essential for pregnant women, the results are encouraging:

  • Vitamin D, folate, vitamin B12, and vitamin B6 are found in adequate amounts compared to the DV in most prenatal supplements.

However, when you look at nutrients that have more recently been recognized as essential for pregnant women, the story is very different:

  • For vitamin K only 31% of prenatal supplements contain vitamin K and only 16% meet or exceed their recommendation for vitamin K.
    • Their recommendation (90 mcg/day) is identical to the DV for vitamin K. So, there is no doubt that most prenatal supplements do not provide adequate amounts of vitamin K.
  • For choline only 40 % of prenatal supplements contain choline and only 2% meet or exceed their recommendation for choline.
    • Their recommendation (350 mg/day) for choline is less than the 450 mg/day recommended by the NIH and the American College of Obstetricians and Gynecologists.
    • The average prenatal supplement only provides 25 mg of choline, which is wildly inadequate by any standard.
  • For DHA only 42% of prenatal supplements contain DHA and only 1% meet or exceed their recommendation for DHA.
    • Their recommendation (600 mg/day) for DHA is higher than the 200 – 300 mg/day recommended by the most health organizations.
    • However, the average prenatal supplement only provides 94 mg of DHA, so even at 200 – 300 mg/day a substantial percentage of prenatal supplements do not provide adequate amounts of DHA.

Minerals:

calcium supplementsThis study did not consider minerals, so I will draw on another source to estimate the adequacy of minerals in prenatal supplements.

Three key minerals for a healthy pregnancy are iron, calcium, and iodine (Yes, I realize that iodine is not a mineral, but it is usually listed with the minerals on supplement labels. And it is also essential for a healthy pregnancy). Fortunately, another recent study (LG Saldanha et al, Journal of the American Academy of Dietetics, 117: 1429-1436, 2017) looked at the adequacy of these nutrients in 214 prenatal supplements. This study found:

  • The iron DV for pregnant and lactating women is 27 mg/day and 95% of prenatal supplements contained iron at the recommended level.
  • The calcium DV for pregnant and lactating women is 1,300 mg/day. A high percentage (91%) of prenatal supplements contain calcium, but many prenatal supplements only provide 100-200 mg of calcium. That is far less than the DV.
  • The situation for iodine is even more alarming. Only 50% of prenatal supplements contain iodine. And for those that do contain iodine, the average iodine content is only 150 mcg (The DV for pregnant and lactating women is 290 mcg/day).

It is no wonder the authors of these two studies concluded that most prenatal supplements on the market do not provide adequate amounts of all the nutrients needed for a healthy pregnancy. The shortfalls are particularly acute for vitamin K, choline, DHA, iodine, and calcium.

What Should You Look For In A Prenatal Supplement?

Questioning WomanBy now you are probably wondering how you know a good prenatal supplement from a bad one. Here are six simple rules for choosing the ideal prenatal supplement.

  1. Don’t rely on health “gurus” to choose your prenatal supplement for you. I did a little “sleuthing” for you. I searched the internet for websites claiming to have identified the “best” prenatal supplements. I checked out the supplements they recommended, and here is what I found:
  • The supplements the gurus recommended checked all the boxes in that they had some of all the nutrients required for a healthy pregnancy.
  • However, the amount of those nutrients ranged from lows of 10-20% of the DV for pregnant and lactating women to thousands of percent of the DV for others.
  • In other words, they contained grossly inadequate levels of some nutrients and potentially toxic levels of others.

2) Don’t believe label claims or claims made on the manufacturer’s website. Remember the claim, “Concise prenatal formula supports both bone and brain development”, that I mentioned at the beginning of this article? The supplement associated with that claim had only 100 mg of calcium and no DHA. It is hard to imagine a supplement like that supporting either bone or brain health. The claim was bogus.

3) Don’t assume your doctor’s recommendation is the ideal prenatal supplement. A recent study (LG Saldanha et al, Journal of the American Academy of Dietetics, 117: 1429-1436, 2017) compared prescription (the kind your doctor is likely to prescribe) and non-prescription prenatal supplements. It found:

  • Compared with non-prescription supplements, prescription supplements contained significantly fewer vitamins (9 versus 11) and minerals (4 versus 8).
  • While prescription supplements contained more folic acid than non-prescription supplements, they contained significantly less vitamin A, vitamin D, iodine, and calcium.

4) Look for a prenatal supplement containing all the essential nutrients, not just those important for a healthy pregnancy. The authors of the first study made the point that most women will stop taking their regular multivitamin when they start their prenatal supplement. If that is you, your prenatal supplement should contain the nutrients you were getting from your multivitamin.

5) Look for a prenatal supplement that provide 100% of DV for all nutrients except the bulky ones. The ideal prenatal supplement should contain 100% of the DV for pregnant and lactating women for all essential nutrients. Avoid supplements with very low amounts of some nutrients and large excesses of others.

  • Bulky nutrients like calcium, magnesium, and choline are exceptions. It would be hard to get 100% DV for those nutrients in any supplement you could swallow.

6) Look for a prenatal supplement that “fills the gap” for bulky nutrients.

  • Fortunately, the NIH has estimated how much of these nutrients the average American woman gets in her diet. That allows us to estimate how much the average woman needs to get from her prenatal supplement to bring her total intake up to the DV for pregnant and lactating women. That amounts to 458 mg for calcium, 166 mg for magnesium, and 272 mg for choline.
    • That gives you a reasonable benchmark for assessing whether a prenatal supplement is providing enough of those important nutrients. When you read their labels, you will find most prenatal supplements are woefully inadequate for these nutrients.
    • You also need to ask whether your diet is “average”. For example, the average American gets 72% of their calcium from dairy foods. If you do not consume dairy, you may need to get more calcium from your supplement.

7) Avoid the excesses. Your unborn baby is precious. You don’t want to expose it to potentially toxic doses of vitamins or minerals. Avoid any prenatal supplement containing thousands of percent of the DV for some nutrients. And I would recommend caution with supplements containing over 200% of the DV for some nutrients if you are taking other supplements that may provide the same nutrient(s).

The Bottom Line 

Two recent studies have surveyed hundreds of prenatal vitamins and asked whether they provided adequate amounts of the nutrients that are essential for a healthy pregnancy. The results were shocking.

  • While most prenatal supplements provided adequate amounts of folic acid, vitamin B12, vitamin B6, vitamin D, and iron…
  • They were woefully inadequate for vitamin K, calcium, choline, iodine, and DHA – all nutrients that are essential for a healthy pregnancy.
  • Furthermore, prescription prenatal supplements (the kind your doctor is likely to prescribe) were no better than non-prescription supplements.

The authors of the first study concluded, “[Our] analysis found that prenatal supplements vary widely in content, often only contain a subset of essential vitamins, and the levels were often below…recommendations.”

In other words, their study found that most prenatal vitamins on the market may not be adequate to support your needs and the needs of your child through pregnancy and breastfeeding.

For more details on this study and my discussion of how you can select the ideal prenatal supplement for you and your unborn child, read the article above.

These statements have not been evaluated by the Food and Drug Administration. This information is not intended to diagnose, treat, cure, or prevent any disease

 

Can Healthy Eating Help You Lose Weight?

Who Benefits Most From A Healthy Diet?

Author: Dr. Stephen Chaney 

fad dietsFad diets abound. High protein, low carb, low fat, vegan, keto, paleo – the list is endless. They all claim to be backed by scientific studies showing that you lose weight, lower your cholesterol and triglycerides, lower your blood pressure, and smooth out your blood sugar swings.

They all claim to be the best. But any reasonable person knows they can’t all be the best. Someone must be lying.

My take on this is that fad diet proponents are relying on “smoke and mirrors” to make their diet look like the best. I have written about this before, but here is a brief synopsis:

  • They compare their diet with the typical American diet.
    • Anything looks good compared to the typical American diet.
    • Instead, they should be comparing their diet with other weight loss diets. That is the only way we can learn which diet is best.
  • They are all restrictive diets.
    • Any restrictive diet will cause you to eat fewer calories and to lose weight.
    • As little as 5% weight loss results in lower cholesterol & triglycerides, lower blood pressure, and better control of blood sugar levels.

Simply put, any restrictive diet will give you short-term weight loss and improvement in blood parameters linked to heart disease, stroke, and diabetes. But are these diets healthy long term? For some of them, the answer is a clear no. Others are unlikely to be healthy but have not been studied long term. So, we don’t know whether they are healthy or not.

What if you started from the opposite perspective? Instead of asking, “Is a diet that helps you lose weight healthy long term?”, what if you asked, “Can healthy eating help you lose weight?” The study (S Schutte et al, American Journal of Clinical Nutrition, 115: 1-18, 2022) I will review this week asked that question.

More importantly, it was an excellent study. It compared a healthy diet to an unhealthy diet with exactly the same degree of caloric restriction. And it compared both diets to the habitual diet of people in that area. This study was performed in the Netherlands, so both weight loss diets were compared to the habitual Dutch diet.

How Was The Study Done?

clinical studyThis was a randomized controlled trial, the gold standard of clinical studies. The investigators recruited 100 healthy, abdominally obese men and women aged 40-70. At the time of entry into the study none of the participants:

  • Had diabetes.
  • Smoked
  • Had a diagnosed medical condition.
  • Were on a medication that interfered with blood sugar control.
  • Were on a vegetarian diet.

The participants were randomly assigned to:

  • A high-nutrient quality diet that restricted calories by 25%.
  • A low-nutrient-quality diet that restricted calories by 25%.
  • Continue with their habitual diet.

The study lasted 12 weeks. The participants met with a dietitian on a weekly basis. The dietitian gave them the foods for the next week and monitored their adherence to their assigned diet. They were advised not to change their exercise regimen during the study.

At the beginning and end of the study the participants were weighed, and cholesterol, triglycerides, and blood pressure were measured.

Can Healthy Eating Help You Lose Weight?

Vegetarian DietTo put this study into context, these were not healthy and unhealthy diets in the traditional sense.

  • Both were whole food diets.
  • Both included fruits, vegetables, low-fat dairy, and lean meats.
  • Both restricted calories by 25%.

The diets were designed so that the “high-nutrient quality” diet had significantly more plant protein (in the form of soy protein), fiber, healthy fats (monounsaturated and omega-3 fats), and significantly less fructose and other simple sugars than the “low-nutrient-quality” diet.

At the end of 12 weeks:

  • Participants lost significant weight on both calorie-restricted diets compared to the group that continued to eat their habitual diet.
    • That is not surprising. Any diet that successfully restricts calories will result in weight loss.
  • Participants on the high-nutrient quality diet lost 33% more weight than participants on the low-nutrient-quality diet (18.5 pounds compared to 13.9 pounds).
  • Participants on the high-nutrient quality diet lost 50% more inches in waist circumference than participants on the low-nutrient-quality diet (1.8 inches compared to 1.2 inches).
    • This is a direct measure of abdominal obesity.

When the investigators measured blood pressure, fasting total cholesterol levels, and triglyceride levels:Heart Healthy Diet

  • These cardiovascular risk factors were significantly improved on both diets.
    • Again, this would be expected. Any diet that causes weight loss results in an improvement in these parameters.
  • The reduction in total serum cholesterol was 2.5-fold greater and the reduction in triglycerides was 2-fold greater in the high-nutrient quality diet group than in the low-nutrient-quality diet group.
  • The reduction in systolic blood pressure was 2-fold greater and the reduction in diastolic blood pressure was 1.67-fold greater in the high-nutrient quality diet group than in the low-nutrient-quality diet group.

The authors concluded, “Our results demonstrate that the nutrient composition of an energy-restricted diet is of great importance for improvements of metabolic health in an overweight, middle-aged population. A high-nutrient quality energy-restricted diet enriched with soy protein, fiber, monounsaturated fats, omega-3 fats, and reduced in fructose provided additional health benefits over a low-nutrient quality energy-restricted diet, resulting in greater weight loss…and promoting an antiatherogenic blood lipid profile.”

In short, participants in this study lost more weight and had a better improvement in risk factors for heart disease on a high-nutrient-quality diet than on a low-nutrient-quality diet. Put another way, healthy eating helped them lose weight and improved their health.

Who Benefits Most From A Healthy Diet?

None of the participants in this study had been diagnosed with diabetes when the study began. However, all of them were middle-aged, overweight, and had abdominal obesity. That means many of them likely had some degree of insulin resistance.

Because of some complex metabolic studies that I did not describe, the investigators suspected that insulin resistance might influence the relative effectiveness of the two energy-restricted diets.

To test this hypothesis, they used an assay called HOMA-IR (homeostatic model assessment of insulin resistance). Simply put, this assay measures how much insulin is required to keep your blood sugar under control.

They used a HOMA-IR score of 2.5 to categorize insulin resistance among the participants.

  • Participants with a HOMA-IR score >2.5 were categorized as insulin-resistant. This was 55% of the participants.
  • Participants with a HOMA-IR score ≤2.5 were categorized as insulin-sensitive. This was 45% of the participants.

When they used this method to categorize participants they found:

  • Insulin-resistant individual lost about the same amount of weight on both diets.
  • Insulin-sensitive individuals lost 66% more weight on the high-nutrient-quality diet than the low-nutrient-quality diet (21.6 pounds compared to 13.0 pounds).

The investigators concluded, “Overweight, insulin-sensitive subjects may benefit more from a high- than a low-nutrient-quality energy-restricted diet with respect to weight loss…”

What Does This Study Mean For You?

Questioning WomanSimply put this study confirms that:

  • Caloric restriction leads to weight loss, and…
  • Weight loss leads to improvement in cardiovascular risk factors like total cholesterol, triglycerides, and blood pressure.
    • This is not new.
    • This is true for any diet that results in caloric restriction.

This study breaks new ground in that a high-nutrient quality diet results in significantly better:

  • Weight loss and…
  • Reduction in cardiovascular risk factors…

…than a low-nutrient quality diet. As I said above, the distinction between a “high-nutrient-quality” diet and a “low-nutrient-quality” diet may not be what you might have expected.

  • Both diets were whole food diets. Neither diet allowed sodas, sweets, and highly processed foods.
  • Both included fruits, vegetables, grains, and lean meats.
  • Both reduced caloric intake by 25%.
    • If you want to get the most out of your weight loss diet, this is a good place to start.

In this study the investigators designed their “high-nutrient-quality” diet so that it contained:

  • More plant protein in the form of soy protein.
    • In this study they did not reduce the amount of animal protein in the “high-nutrient-quality” diet. They simply added soy protein foods to the diet. I would recommend substituting soy protein for some of the animal protein in the diet.
  • More fiber.
    • The additional fiber came from substituting whole grain breads and brown rice for refined grain breads and white rice, adding soy protein foods, and adding an additional serving of fruit.
  • More healthy fats (monounsaturated and omega-3 fats).
    • The additional omega-3s came from adding a fish oil capsule providing 700mg of EPA and DHA.
  • Less simple sugars. While this study focused on fructose, their high-nutrient-quality diet was lower in all simple sugars.

ProfessorAll these changes make great sense if you are trying to lose weight. I would distill them into these 7 recommendations.

  • Follow a whole food diet. Avoid sodas, sweets, and highly processed foods.
  • Include all 5 food groups in your weight loss diet. Fruits, vegetables, whole grains, dairy, and lean proteins all play an important role in your long-term health.
  • Eat a primarily plant-based diet. My recommendation is to substitute plant proteins for at least half of your high-fat animal proteins. And this study reminds us that soy protein foods are a convenient and effective way to achieve this goal.
  • Eat a diet high in natural fibers. Including fruits, vegetables, whole grains, beans, nuts, seeds, and soy foods in your diet is the best way to achieve this goal.
  • Substitute healthy fats (monounsaturated and omega-3 fats) for unhealthy fats (saturated and trans fats) in your diet. And this study reminds us that it is hard to get enough omega-3s in your diet without an omega-3 supplement.
  • Reduce the amount of added sugar, especially fructose, from your diet. That is best achieved by eliminating sodas, sweets, and highly processed foods from the diet. I should add that fructose in fruits and some healthy foods is not a problem. For more information on that topic, I refer you to a previous “Health Tips” article .
  • Finally, I would like to remind you of the obvious. No diet, no matter how healthy, will help you lose weight unless you cut back on calories. Fad diets achieve that by restricting the foods you can eat. In the case of a healthy diet, the best way to do it is to cut back on portion sizes and choose foods with low caloric density.

I should touch briefly on the third major conclusion of this study, namely that the “high-nutrient quality diet” was not more effective than the “low-nutrient-quality” diet for people who were insulin resistant. In one sense, this was not news. Previous studies have suggested that insulin-resistant individuals have more difficulty losing weight. That’s the bad news.

However, there was a silver lining to this finding as well:

  • Only around half of the overweight, abdominally obese adults in this study were highly insulin resistant.
    • That means there is a ~50% chance that you will lose more weight on a healthy diet.
  • Because both diets restricted calories by 25%, insulin-resistant individuals lost weight on both diets.
    • That means you can lose weight on any diet that successfully reduces your caloric intake. That’s the good news.
    • However, my recommendation would still be to choose a high-nutrient quality diet that is designed to reduce caloric intake, because that diet is more likely to be healthy long term.

The Bottom Line 

A recent study asked, “Can healthy eating help you lose weight?” This study was a randomized controlled study, the gold standard of clinical studies. The participants were randomly assigned to:

  • A high-nutrient quality diet that restricted calories by 25%.
  • A low-nutrient-quality diet that restricted calories by 25%.
  • Continue with their habitual diet.

These were not healthy and unhealthy diets in the traditional sense.

  • Both were whole food diets.
  • Both included fruits, vegetables, low-fat dairy, and lean meats.
  • Both restricted calories by 25%.

The diets were designed so that the “high-nutrient quality” diet had significantly more plant protein (in the form of soy protein), fiber, healthy fats (monounsaturated and omega-3 fats), and significantly less fructose and other simple sugars than the “low-nutrient-quality” diet.

At the end of 12 weeks:

  • Participants on the high-nutrient quality diet lost 33% more weight than participants on the low-nutrient-quality diet (18.5 pounds compared to 13.9 pounds).

When the investigators measured cardiovascular risk factors at the end of 12 weeks:

  • The reduction in total serum cholesterol was 2.5-fold greater and the reduction in triglycerides was 2-fold greater in the high-nutrient quality diet group than in the low-nutrient-quality diet group.
  • The reduction in systolic blood pressure was 2-fold greater and the reduction in diastolic blood pressure was 1.67-fold greater in the high-nutrient quality diet group than in the low-nutrient-quality diet group.

The authors concluded, “Our results demonstrate that the nutrient composition of an energy-restricted diet is of great importance for improvements of metabolic health in an overweight, middle-aged population. A high-nutrient quality energy-restricted diet enriched with soy protein, fiber, monounsaturated fats, omega-3 fats, and reduced in fructose provided additional health benefits over a low-nutrient quality energy-restricted diet, resulting in greater weight loss…and promoting an antiatherogenic blood lipid profile.”

In short, participants in this study lost more weight and had a better improvement in risk factors for heart disease on a high-nutrient-quality diet than on a low-nutrient-quality diet. Put another way, healthy eating helped them lose weight and improved their health.

For more details on this study, what this study means for you, and my 7 recommendations for a healthy weight loss diet, read the article above.

These statements have not been evaluated by the Food and Drug Administration. This information is not intended to diagnose, treat, cure, or prevent any disease.

How Much Omega-3s Do Children Need?

What Does This Study Mean For Your Children?

Author: Dr. Stephen Chaney 

It is back to school time again. If you have children, you are probably rushing around to make sure they are ready.

  • Backpack…Check.
  • Books…Check
  • School supplies…Check
  • Omega-3s…???

Every parent wants their child to do their best in school. But do they need omega-3s to do their best? I don’t need to tell you that question is controversial.

Some experts claim that omega-3 supplementation in children improves their cognition. [Note: Cognition is defined as the mental action or process of acquiring knowledge and understanding through thought, experience, and the senses. In layman’s terms that means your child’s ability to learn.]

Other experts point out that studies in this area disagree. Some studies support these claims. Others don’t. Because the studies disagree these experts conclude there is no good evidence to support omega-3 supplementation in children.

The authors of this study (ISM van der Wurff et al, Nutrients, 12: 3115, 2020) took a different approach. They asked why these studies disagreed. They hypothesized that previous studies disagreed because there is a minimal dose of omega-3s needed to achieve cognitive benefits in children. In short, they were asking how much omega-3s do children need.

They based their hypothesis on recent studies showing that a minimum dose of omega-3s is required to show heart health benefits in adults.

What Have We Learned From Studies on Omega-3s And Heart Health?

Omega-3s And Heart DiseaseThe breakthrough in omega-3/heart health studies came with the development of something called the omega-3 index. Simply put, omega-3s accumulate in our cell membranes. The omega-3 index is the percent omega-3s in red blood cell membranes and is a good measure of our omega-3 status.

Once investigators began measuring the omega-3 index in their studies and correlating it with heart health, it became clear that:

  • An omega-3 index of ≤4% correlated with a high risk of heart disease.
  • An omega-3 index of ≥8% correlated with a low risk of heart disease.
  • Most Americans have an omega-3 index in the 4-6% range.
  • Clinical studies in which participants’ omega-3 index started in the low range and increased to ~8% through supplementation generally showed a positive effect of omega-3s on reducing heart disease risk. [I say generally because there are other factors in study design that can obscure the effect of omega-3s.]

This is the model that the authors adopted for their study. They asked how much omega-3s do children need to show a positive effect of omega-3s on their cognition (ability to learn).

How Was The Study Done?

Clinical StudyThe authors included 21 studies in their analysis that met the following criteria:

  • All studies were placebo controlled randomized clinical trials.
  • The participants were 4-25 years old and had not been diagnosed with ADHD.
  • Supplementation was with the long-chain omega-3s DHA and/or EPA.
  • The trial assessed the effect of omega-3 supplementation on cognition.

I do not want to underestimate the difficulties the authors faced in their quest. The individual studies differed in:

  • The dose of omega-3s.
    • The relative amount of DHA and EPA.
    • Whether omega-3 index was measured. Only some of the studies measured fatty acid levels in the blood. The authors were able to calculate the omega-3 index in these studies.
  • How cognition (ability to learn) was measured.
  • The age of the children.
    • 20 of the studies were done with children (4-12 years old) or late adolescents (20-25 years old).
    • Only one study was done on early to middle adolescents (12-20 years old).
  • All these variables influence the outcome and could obscure the effect of omega-3s on cognition.

In short, determining the omega-3 dose-response for an effect on cognition was a monumental task. It was like searching for a needle in a haystack. These authors did a remarkable job.

How Much Omega-3s Do Children Need?

Child Raising HandHere is what the scientists found when they analyzed the data:

  • 60% of the studies in which an omega-3 index of ≥6% was achieved showed a beneficial effect of omega-3 supplementation on cognition (ability to learn) compared to 20% of the studies that did not achieve an omega-3 index of 6%.
    • That is a 3-fold difference in effectiveness once a threshold of 6% omega-3 index was reached.
  • 50% of the studies in which a dose of ≥ 450 mg/day of DHA + EPA was used showed a beneficial effect of omega-3 supplementation on cognition (ability to learn) compared to 25% of the studies that used <450 mg/day DHA + EPA.
    • That is a 2-fold difference in effectiveness once a threshold of 450 mg/day DHA + EPA was given.

The authors concluded, “Daily supplementation of ≥450 mg/day DHA and/or EPA and an increase in the omega-3 index to >6% makes it more likely to show efficacy [of omega-3s] on cognition (ability to learn) in children and adolescents.”

What Does This Study Tell Us?

Question MarkIt is important to understand what this study does and does not tell us.

This study does not:

  • Prove that omega-3 supplementation can improve cognition (ability to learn) in children and adolescents.
  • Define optimal levels of DHA + EPA.
  • Tell us whether DHA, EPA, or a mixture is better.

It was not designed to do any of these things. It was designed to give us a roadmap for future studies. It tells us how to design studies that can provide definitive answers to these questions.

This study does:

  • Define a threshold dose of DHA + EPA for future studies (450 mg/day).
  • Tells us how to best use the omega-3 index in future studies. To obtain meaningful results:
    • Participants should start with an omega-3 index of 4% or less.
    • Participants should end with an omega-3 index of 6% or greater.
  • In my opinion, future studies would also be much more effective if scientists in this area of research could agree on a single set of cognitive measures to be used in all subsequent studies.

In short, this study provides critical information that can be used to design future studies that will be able to provide definitive conclusions about omega-3s and cognition in children.

What Does This Study Mean For Your Children?

child geniusAs a parent or grandparent, you probably aren’t interested in optimizing the design of future clinical studies. You want answers now.

Blood tests for omega-3 index are available, but they are not widely used. And your insurance may not cover them.

So, for you the most important finding from this study is that 450 mg/day DHA + EPA appears to be the threshold for improving a child’s cognition (their ability to learn).

  • 450 mg/day is not an excessive amount. The NIH defines adequate intakes for omega-3s as follows:
  • 4-8 years: 800 mg/day
  • 9-13 years: 1 gm/day for females, 1.2 gm/day for males
  • 14-18 years: 1.1 gm/day for females and 1.6 gm/day for males.
  • With at least 10% of that coming from DHA + EPA

Other organizations around the world recommend between 100 mg/day and 500 mg/day DHA + EPA depending on the age and weight of the child and the organization.

  • Most children need supplementation to reach adequate omega-3 intake. The NIH estimates the average child only gets around 40 mg/day omega-3s from their diet. No matter which recommendation you follow, it is clear that most children are not getting the recommended amount of DHA + EPA in their diet.
  • Genetics.
  • Diet.
  • Environment.
  • The value placed on learning by parents and peers.

Supplementation is just one factor in your child’s ability to learn. But it is one you can easily control. . And if your child is like most, he or she is probably not getting enough omega-3s in their diet.

The Bottom Line 

It is back to school time again. Every parent wants their child to do their best in school. But do they need omega-3s to do their best? I don’t need to tell you that question is controversial.

Some studies support these claims, but others don’t. Because the studies disagree some experts conclude there is no good evidence to support omega-3 supplementation in children.

The authors of a recent study took a different approach. They asked why these studies disagreed. They hypothesized that previous studies disagreed because there was a minimal dose of omega-3s needed to achieve cognitive benefits in children. They asked how much omega-3s children need.

They analyzed the data from 21 previous studies looking at the effect of omega-3 supplementation on cognition (ability to learn) in children and adolescents. Their analysis showed:

  • 60% of the studies in which an omega-3 index of ≥6% was achieved showed a beneficial effect of omega-3 supplementation on cognition (ability to learn) compared to 20% of the studies that did not achieve an omega-3 index of 6%.
    • That is a 3-fold difference in effectiveness once a threshold of 6% omega-3 index was reached.
  • 50% of the studies in which a dose of ≥ 450 mg/day of DHA + EPA was used showed a beneficial effect of omega-3 supplementation on cognition (ability to learn) compared to 25% of the studies that used <450 mg/day DHA + EPA.
    • That is a 2-fold difference in effectiveness once a threshold dose of 450 mg/day DHA + EPA was given.

The authors concluded, “Daily supplementation of ≥450 mg/day DHA + EPA and an increase in the omega-3 index to >6% makes it more likely to show efficacy [of omega-3s] on cognition (ability to learn) in children and adolescents.”

For more details on the study and what it means for your children and grandchildren, read the article above.

These statements have not been evaluated by the Food and Drug Administration. This information is not intended to diagnose, treat, cure, or prevent any disease.

Health Tips From The Professor