Vitamin D Just Got More Complicated

The Hidden Flaws Of Vitamin D Studies

Author: Dr. Stephen Chaney

vitamin dIf I can paraphrase a famous saying, the question is, “To D or not to D.” On the one hand, you are told that vitamin D is a miracle supplement. It cures all your ailments. On the other hand, you are told that vitamin D supplements are worthless. They are a waste of money.

The problem is that vitamin D studies are all over the map. Some have shown beneficial effects of vitamin D supplementation. Others have come up empty. That allows “experts” to cherry pick the studies that support their bias. No wonder you are so confused.

If you have read my books or previous issues of “Health Tips From the Professor”, you know there is no such thing as a perfect clinical study. They all have their flaws. Sometimes the flaws are obvious. But sometimes we never know the flaws. We just know those studies are outliers.

So, let’s delve a little deeper into vitamin D metabolism and the hidden flaws that may have prevented some studies from showing the benefits of vitamin D supplementation. Then we will look at new data suggesting that vitamin D supplementation is more complicated than anyone imagined.

A Vitamin D Primer 

Vitamin D MetabolismLet’s start with a brief review of vitamin D metabolism.

  • Vitamin D metabolism starts in the skin when 7-dehydrocholesterol (a metabolite of cholesterol) is converted to cholecalciferol (vitamin D3) in a reaction requiring sunlight.
    • In this sense, vitamin D3 is a hormone produced by the body. It only became an essential nutrient (vitamin) when Homo sapiens migrated to Northern latitudes and started to spend most of their time indoors.
  • Vitamin D then travels to the liver where it is converted to 25-hydroxyvitamin D. This is the most abundant form of vitamin D in the blood.
  • 25-hydroxyvitamin D next travels to the kidney where it is converted to 1,25-dihydroxyvitamin D. This is the active form of vitamin D. It is the form that binds to the vitamin D receptor.

Vitamin D was first discovered as an essential nutrient that was needed for adequate bone mineralization. It prevented rickets in children and osteomalacia in adults.

  • The role of vitamin D in building strong bones is well established.

However, a few decades ago, it was discovered that vitamin D receptors were found in many other tissues including skin, immune system, heart, muscle, brain and nerves, and fat cells. This revolutionized our understanding of vitamin D’s role in the body.

  • This led to suggestions that vitamin D played a role in immunity and autoimmune diseases, brain function and mood, heart health, muscle and fat metabolism, and much more. Here is where it started to get confusing.
    • Some studies showed positive results. They found that vitamin D played an important role in each of these areas, and that vitamin D supplementation was beneficial
    • Other studies showed negative results. They found no benefit of vitamin D supplementation.

So, the question arose, “Were the negative studies flawed?” In some cases, the answer was a clear, “Yes”. The flaws were easy to identify. In other cases, no obvious flaw could be discovered.

However, that has changed dramatically in recent years when some “hidden flaws” were discovered that invalidated many of the negative studies. That’s the topic of my next section.

The Hidden Flaws Of Vitamin D Studies 

FlawsMost previous studies simply measured vitamin D intake:

  • In dietary studies, vitamin D intake was measured using diet questionnaires.
  • In supplement studies, vitamin D intake was measured by tracking whether the participants took all the supplement pills they were provided.

It was assumed that a certain dose of vitamin D produced the same blood levels of 1,25-dihydroxyvitamin D in everyone.

Now we know that assumption was flawed. The absorption and conversion of vitamin D to 1,25-dihydroxyvitamin D varies widely from individual to individual.

That means that every vitamin D study that relied on vitamin D intake without measuring its effect on blood 1,25-dihydroxyvitamin D levels is flawed. Their conclusions may or may not be true. Their evidence is unreliable.

I’m willing to give the authors of these studies some grace. They didn’t purposely design a flawed study. At the time they designed their studies we didn’t know about individual variability in the conversion of vitamin D to 1,25-dihydroxyvitamin D.

However, there is another “hidden flaw” I’m less willing to excuse. There have been some recent papers that measured 1,25-dihydroxyvitamin D levels before and after supplementation and have concluded that vitamin D supplementation had no benefit.

However, they failed to mention that the group they were studying already had adequate 1,25-dihydroxyvitamin D levels in their blood prior to supplementation. Under those circumstances there is no reason to expect that vitamin D supplementation will have any significant benefit.

This is an obvious flaw. But I call it a “hidden flaw” because the authors hid it. They didn’t mention it in their abstract or conclusion.

That’s dishonest. Most people just read the abstract and conclusions, and that is the information that is shared in the media. Very few people read the study to see if the abstract and conclusions are accurate.

As if this weren’t complicated enough, our understanding of the effects of vitamin D just got a lot more complicated.

Vitamin D Just Got More Complicated

clinical studyTwo recent reports indicate that predicting who will benefit from vitamin D supplementation may be even more complicated than we thought.

Report #1 suggests that there is significant individual variability in how people respond to blood levels of 1,25-dihydroxyvitamin D. If true, this adds another level of complexity to studies of vitamin D supplementation.

  • Not only do the studies need to measure the 1,24-dihydroxyvitamin D levels before and after supplementation for everyone in the study.
  • But they would also need to measure the individual response to 1,25-dihydroxyvitamin D.

This report (C Carlberg and A Haq, Journal of Steroid Biochemistry & Molecular Biology, 175: 12-17, 2018) summarized the results of two clinical studies and used that information to develop what they called the, “Personal Vitamin D Response Index”.

  • The first study supplemented elderly men (average age = 71) for 5 months during the Finnish winter (when blood 1,25-dihydroxyvitamin D levels are lowest) with 0, 1600 IU, or 3200 IU per day.
  • The second study supplemented young (average age = 35) men and women with a single high dose of vitamin D (80,000 IU) and followed them for 30 days.

At the beginning and end of each study:

  • Blood levels of 1,25-dihydroxyvitamim D were measured.
  • The activity of 24 vitamin D-responsive genes was measured. (These are genes whose activity is controlled by a vitamin D receptor and whose activity was known to respond to vitamin D.)
  • In addition, more than 100 clinical and biochemical parameters that might be affected by vitamin D levels were measured. Of these, 12 were found to respond to vitamin D supplementation.

The authors of this report combined all 36 vitamin D-responsive biomarkers (24 genes and 12 biochemical parameters) into a single screening panel they called the “personal vitamin D response index” and correlated this index with the change in 25-dihydroxyvitamin D levels for each individual.

They discovered significant individual variability in how the subjects in these studies responded to increases in their 1,25-dihydroxyvitamin D levels. For example:

  • They were able to divide the study participants into low, mid, and high responders to an increase in 1,25-dihydroxyvitamin D levels.
    • In the first study 23.9% were low responders, 50.7% were mid responders, and 25.4% were high responders.
    • In the second study 28.6% were low responders, 31.4% were mid responders, and 40% were high responders.

This is a confounding variable for vitamin D studies because the authors of this report estimated:

  • Low responders might require 1,25-dihydroxyvitamin D blood levels of 75-100 nmol/L to see a benefit of supplementation. Most studies do not attain 1,25-dihydroxyvitamin D levels that high, so low responders would not appear to benefit from supplementation.
  • High responders may already experience optimal benefits of vitamin D at 1,25-dihydroxyvitamin D levels that are generally considered as inadequate. So, supplementation would offer no apparent benefit for this group either.
  • Only mid responders might be expected to show a clear benefit from vitamin D supplementation.

The authors concluded, “Individuals can be distinguished into high, mid, and low responders to vitamin D via measuring vitamin D sensitive molecular parameters…Thus, we suggest that the need for vitamin D supplementation depends on the vitamin D status relative to the personal vitamin D response index of an individual rather than on the vitamin D status alone.”

Report #2 (P Maissan and C Carlberg, Nutrients, 17, 1204, 2025)) suggests that the benefits of vitamin D supplementation might vary depending on the time of day the supplement was taken.

This phenomenon is known as circadian rhythm, which describes how time influences physiological and behavioral processes. A little background information is in order.

  • We have a “biological clock” that is reset every day by sunlight exposure. Hormone levels rise and physiological processes increase and decrease during the day in response to this biological clock.
  • For the most part, you have no knowledge that this is going on in your body but let me share one example you are probably aware of.
    • Some people suffer from “seasonal affective disorder” (SAD). It is a type of depression associated with the winter months, especially in regions with short days and long nights. For these individuals, bright lights that mimic sunlight are often an effective therapy.
  • Some aspects of circadian rhythm are mediated by the pineal gland which produces melatonin. Others are affected by the hypothalamus.
  • Since vitamin D synthesis requires sunlight, it makes sense that some vitamin D-responsive genes would also display a circadian rhythm.

This report used the data from the single high-dose vitamin D study described above. They found that:

  • Of 361 known vitamin D responsive genes, 87 of them show a clear circadian rhythm.
  • For 14 of these genes, there was significant individual variability in the response to vitamin D supplementation.
    • Group 1 (36% of the population) had significantly higher expression of these genes following vitamin D supplementation than Group 2.

The authors concluded, “Overall, our findings emphasize the circadian nature of vitamin D target gene regulation and highlight interindividual variability in the…responses to vitamin D3 supplementation. These insights have important implications for personalized vitamin D3 supplementation strategies, suggesting that optimal dosing regimens may need to consider both circadian biology [the time of day the supplement is taken] and individual responsiveness to vitamin D.”

What Does This Mean For Clinical Studies?

Confusion Clinical StudiesThe latest reports explain why vitamin D studies are so confusing – why some studies show benefits of vitamin D supplementation and other studies come up empty. Simply put, it’s because vitamin D metabolism is so complicated. Let me walk you through the complications.

1) There is significant individual variability in the conversion of vitamin D to its active 1,25-dihydroxyvitamin D form.

  • If vitamin D supplementation does not increase 1,25-dihydroxyvitamin D levels into the adequate range, it is likely that the results will be negative – meaning no benefit of vitamin D supplementation will be observed.
  • If 1,25-dihydroxyvitamin D levels are already in the adequate range prior to supplementation, the results may also be negative.
  • Fortunately, it is easy to determine blood levels of 1,25-dihydroxyvitamin D in study participants, and most good vitamin D studies are starting to do that.

But vitamin D metabolism just got more complicated. If recent studies are correct:

 

2) There may be significant individual variability in the biological response to 1,25-dihydroxyvitamin D.

  • If someone is a low responder, supplementation at the usual levels of vitamin D is unlikely to result in high enough 1,25-dihydroxyvitamin D levels to give a response.
  • If someone is a high responder, they will probably have maxed out their response without supplementation, so adding a vitamin D supplement is unlikely to provide any benefit.
  • Sorting participants in clinical studies into low, mid, and high responders is possible, but not easy. Currently the process of sorting individuals into these categories is based on 26 biomarkers. There is no single biomarker that predicts the vitamin D response level for any individual.

3) There may be a circadian rhythm for some beneficial effects of vitamin D. If this observation is confirmed by future research, the time of day vitamin D supplements should be taken may be important.

What Does This Mean For You?

By this point, you are probably more confused than ever. So, let me sum it up for you.

  • Many benefits of vitamin D supplementation are unclear. Some studies show benefits. Others come up empty. “Experts” cherry pick studies that support their beliefs.
  • Vitamin D metabolism is complicated. And each new study appears to introduce a new layer of complexity onto our understanding of how vitamin D works.
  • Many of the negative vitamin D studies were done before we understood the complexities of vitamin D metabolism or did not take known complexities into account.
  • But just because many of the negative studies are flawed doesn’t mean all the claims for vitamin D supplementation are true. Every study has its flaws – both positive and negative studies.

So, here is my advice to you.

#1: Be a cautiously optimistic consumer.

  • If your doctor or some internet guru tells you vitamin D supplementation is worthless, don’t believe them. But also, don’t believe claims for miraculous cures with vitamin D supplements.
  • We have fairly strong evidence that vitamin D supports healthy bones, a strong immune system, strong muscles, and a healthy brain. If you discover any other benefits of vitamin D supplementation, consider them to be unexpected side benefits.

#2: Base your intake of vitamin D on your blood 1,25-dihydroxyvitamin D levels. The NIH says that 1,25-dihydroxyvitamin D levels of:

  • <30 nmol/L indicate vitamin D deficiency
  • 30 to <50 nmol/L indicate vitamin D insufficiency.
  • >50 nmol/L are adequate.
  • >125 nmol/L may be linked to adverse effects.

#3: Because you don’t know whether you are a low, mid, or high responder to 1,25-dihydroxyvitamin D, you may want to shoot for a 1,25-dihydroxyvitamin D level of somewhat greater than 50 nmol/L (the study said that low responders may need as much as 75-100 nmol/L).

  • Personally, I would aim for no more than 60-80 nmol/L because I would not want to risk vitamin D toxicity. I realize that 125 nmol/L is the lower limit set for toxicity, but I prefer to err on the side of caution.

#4: Be aware that there may be a circadian rhythm to the effectiveness of your vitamin D supplement.

  • Sunlight is required for synthesis of vitamin D. So, if there is a circadian rhythm to vitamin D effectiveness, vitamin D supplements might be more effective if taken in the morning than at night.

The Bottom Line

Why do so many studies on the benefits of vitamin D supplementation come up empty? Perhaps it’s because many investigators don’t understand the complexities of vitamin D metabolism. For example:

1) There is significant individual variability in the conversion of vitamin D to its active 1,25-dihydroxyvitamin D form.

  • This has been well characterized, and the best vitamin D studies are starting to incorporate 1,25-dihydroxyvitamin D measurements into their study design.

And recent studies have added to the complexity of vitamin D metabolism. Our understanding of vitamin D just got a lot more complicated. For example, these studies suggest that:

2) There may be significant individual variability in the biological response to 1,25-dihydroxyvitamin D levels.

3) There may be a circadian rhythm for some beneficial effects of vitamin D.

  • These observations have yet to be incorporated into clinical studies of vitamin D supplementation and may explain why some existing studies have failed to find beneficial effects of vitamin supplementation.

For more details on these studies and what they may mean for you, read the article above.

These statements have not been evaluated by the Food and Drug Administration. This information is not intended to diagnose, treat, cure or prevent any disease.

______________________________________________________________________________

My posts and “Health Tips From the Professor” articles carefully avoid claims about any brand of supplement or manufacturer of supplements. However, I am often asked by representatives of supplement companies if they can share them with their customers.

My answer is, “Yes, as long as you share only the article without any additions or alterations. In particular, you should avoid adding any mention of your company or your company’s products. If you were to do that, you could be making what the FTC and FDA consider a “misleading health claim” that could result in legal action against you and the company you represent.

For more detail about FTC regulations for health claims, see this link.

https://www.ftc.gov/business-guidance/resources/health-products-compliance-guidance

_______________________________________________________________________

About The Author 

Dr. Chaney has a BS in Chemistry from Duke University and a PhD in Biochemistry from UCLA. He is Professor Emeritus from the University of North Carolina where he taught biochemistry and nutrition to medical and dental students for 40 years.

Dr. Chaney won numerous teaching awards at UNC, including the Academy of Educators “Excellence in Teaching Lifetime Achievement Award”.

Dr Chaney also ran an active cancer research program at UNC and published over 100 scientific articles and reviews in peer-reviewed scientific journals. In addition, he authored two chapters on nutrition in one of the leading biochemistry text books for medical students.

Since retiring from the University of North Carolina, he has been writing a weekly health blog called “Health Tips From the Professor”. He has also written two best-selling books, “Slaying the Food Myths” and “Slaying the Supplement Myths”. And most recently he has created an online lifestyle change course, “Create Your Personal Health Zone”. For more information visit https://chaneyhealth.com.

For the past 53 years Dr. Chaney and his wife Suzanne have been helping people improve their health holistically through a combination of good diet, exercise, weight control and appropriate supplementation.

 

Which Nutrients Prevent Prenatal Depression?

What Does This Study Mean For You?

Author: Dr. Stephen Chaney 

Yes, you read the headline correctly. Everyone talks about postnatal depression. But prenatal depression is also a “thing”, especially during the third trimester.

  • Worldwide, 4-20% of women experience some degree of depression during the third trimester – with pregnant women in high-income countries at the lower end (4-10%) of depression risk.
  • In contrast, the incidence of postnatal depression is 10-15%.

It is probably no coincidence that the incidence of depression is greatest during the third trimester and during the postnatal period.

  • The third trimester is the most difficult part of pregnancy for many women.
  • When a woman brings her baby home from the hospital her orderly life becomes chaotic.

But what role does nutrition play?

  • While not definitive, many studies suggest that supplementation with B vitamins, especially folic acid, B6, and B12; omega-3 fatty acids; vitamin D; and iron reduce the risk of postnatal depression.
  • However, there is much less information on which nutrients reduce the risk of prenatal depression.

Based on studies suggesting both iron and vitamin D deficiencies may negatively impact mental health, the authors of this study (JL Evanchuk et al, The Journal Of Nutrition. 154, 174-184, 2024) set out to determine whether iron and/or vitamin D deficiencies increase the risk of prenatal depression during the first trimester.

How Was This Study Done?

Clinical StudyThe authors recruited 2189 newly pregnant mothers from Calgary and Edmonton in Ontario Canada between 2009 and 2012. Participants in the study visited clinics in the area upon entry into the study; midway through the first, second, and third trimesters; and at multiple timepoints up to 3 months during the postpartum period.

In addition to the usual pregnancy wellness tests, participants filled out a 24-hour dietary recall and a Supplemental Intake Questionnaire to determine intakes of iron and vitamin D.

Note: The participants were all advised to take some form of prenatal supplement during the study. That’s because prenatal supplements are considered “the standard of care” for pregnant woman, so it would be considered unethical not to include a prenatal supplement in this study.

At the mid-point of the second trimester blood samples were drawn and analyzed for biomarkers of iron and vitamin D insufficiency. For iron the biomarkers were serum ferritin, soluble transferrin receptor, and hepcidin. For vitamin D, the biomarkers were 25-hydroxyvitamin D, 1,25-dihydroxyvitamin D, and 3-epi-25-hydroxyvitamin D.

Iron deficiency was defined as serum ferritin levels <15 µg/L. Vitamin D insufficiency was defined as 25-hydroxyvitamin D levels < 75nmol/L. The other biomarkers were used to confirm these diagnoses.

Maternal depression was measured midway through the third trimester and ~3 months postpartum using 10-item questionnaire called the Edinburg Postnatal Depression Scale (EPDS). The EPDS ranks depression on a scale of 0 to 30, with a score of ≥13 considered an indication of likely depression.

The characteristics of the women enrolled in this study were:

  • Average age = 31.5
  • Average prepregnancy BMI = 23 (healthy weight).
  • Married or cohabitating with a partner = 97%.
  • Highly educated (college or postgraduate degree) = 68%.
  • Income above $70,000/year = 78%.
  • First child = 54%.
  • White = 80%.

Based on the Edinburg Depression Scale, probably depression for the 1822 women who completed the study was 5.6% during the third trimester and 4.4% 3 months postpartum.

Note: The low incidence of depression seen in this study was probably due to:

  • The women in this study were of high socioeconomic status and were receiving excellent healthcare.
  • The women in this study were taking prenatal supplements that provided both iron and vitamin D.

Which Nutrients Prevent Prenatal Depression? 

pregnant women taking vitaminsAs I mentioned when describing how the study was designed, all participants in this study were advised to take a prenatal supplement. Consequently:

  • 94% of the women in this study were taking a supplement containing iron with an average supplemental iron intake of 26 mg/day.
    • Note: The RDA for iron during pregnancy is 30 mg/day and most prenatal supplements provide 27 mg/day.
  • 68% of the women in this study were taking a supplement containing vitamin D, with an average supplemental vitamin D intake of 330 IU/day.
    • Note: The RDA for vitamin D during pregnancy is 600 IU/day, but most prenatal supplements provide far less than that.

When the investigators looked at iron and vitamin D status during the second trimester:

  • 63.3% of the women had adequate levels of both iron and vitamin D.
  • 14.8% of the women were low in vitamin D but had adequate iron levels.
  • 18.4% of the women were low in iron but had adequate levels of vitamin D.
  • 3.5% of the women were low in both iron and vitamin D.

RDAs are supposed to be enough to meet the nutrient requirements of 97-98% of healthy individuals, so it is perhaps surprising to see so many women with insufficient levels of iron (21.9%) and/or vitamin D (18.3%) in this study. This could be due to:

  • Insufficient intake.
    • This is a likely explanation for vitamin D because the supplements women were using in this study provided around half the recommended RDA for vitamin D and the women lived at a northern latitude where sun exposure makes a small contribution to vitamin D levels.
    • However, this is a less likely explanation for insufficient iron levels because the supplements provided 87% of the RDA for iron.
  • Inadequate RDAs. Studies like this one provide a rigorous test for the adequacy of existing RDAs. This study suggests the existing RDA for iron is adequate to meet the needs of ~80% of pregnant women, which is reassuring. However, it may need to be increased to reach the goal of meeting the iron requirements for 97-98% of pregnant women.

But the important question is whether the iron and vitamin D insufficiencies seen in this study mattered. The data suggested that they did.

  • For pregnant women with low iron, but adequate vitamin D levels in the second trimester, there was a small, but significant, increased risk of experiencing depression symptoms in the third trimester.
  • For pregnant women with low iron and vitamin D levels in the second trimester, the risk of experiencing depression symptoms in the third trimester increased by 2.2 points in the 30-point Edinburg Depression Scale.
    • This is equivalent to a 7.4% increased risk of depression from deficiencies of iron and vitamin D alone – and these are only 2 of at least 8 nutrients thought to be associated with maternal depression.

The authors concluded, “Maternal iron and vitamin D biomarkers, measured during midpregnancy, were independently associated with third trimester maternal depression symptoms…This investigation is one of the first to report on the combined adequacy of maternal iron and vitamin D status during pregnancy and its impact on maternal depression.

The novelty of this work reinforces the need to ask similar questions [with other nutrients and] in other pregnant populations. Future investigations should report on the status of multiple nutrients and explore their independent and combined impact on health outcomes of pregnant individuals and their children.”

What Does This Study Mean For You?

Questioning WomanDepression during pregnancy is bad for you. And because your fetus can sense your mood, it is bad for your baby. So, what should you do?

You can consult with your doctor about which antidepressants are safe to take during pregnancy. But the truth is there are no good choices. There are some antidepressants that are off limits. There are other antidepressants that appear to have little short-term risks, but we have no idea if there are long-term risks for your child.

So, what about natural approaches? Let’s start with nutrition.

The biggest takeaway from this study is that prenatal supplements may not be sufficient to prevent nutritional deficiencies that may cause prenatal depression for pregnant women.

  • This does not mean that every pregnant woman suffering prenatal depression should increase their iron and vitamin D levels.
  • However, if you are experiencing prenatal depression, you might want to ask your doctor about checking your iron and vitamin D status to determine if extra iron and/or vitamin D would be beneficial.

And to put this study into its proper perspective we need to remember that iron and vitamin D deficiencies are only two of many nutrients that may increase the risk of prenatal depression.

For example, in addition to iron and vitamin D, prenatal depression is associated with deficiencies of:

  • B vitamins, especially folate, B6 and B12. Most prenatal supplements provide the recommended RDA of folate for pregnant women, but not all contain RDA amounts of B6 and B12.
  • Calcium and magnesium. Very few prenatal supplements provide the recommended RDA for calcium and magnesium.
  • Omega-3s, especially DHA. Very few prenatal supplements provide DHA, and the few that do usually provide inadequate amounts of DHA.

So, when you are having your nutrition conversation with your doctor, you might not want to limit your conversation to iron and vitamin D.

Alternately, as I suggested last week’s issue of “Health Tips From the Professor”, you might wish to add a multivitamin supplement and an omega-3 supplement providing at least 300 mg of DHA plus EPA. This simple step would be sufficient to assure you have adequate levels of nutrients thought to be important for reducing the risk of prenatal depression.

And, of course, there are other lifestyle factors, as well. For example:

  • Diets high in highly processed foods are known to increase the risk of depression. And whole food, primarily plant-based diets decrease the risk of depression.
  • Overweight and obesity increase the risk of depression.
  • Regular exercise decreases the risk of depression.

The Bottom Line

A recent study looked at whether taking a prenatal supplement was sufficient to eliminate deficiencies of iron and vitamin D during pregnancy and whether deficiencies of these two nutrients during the second trimester of pregnancy increased the risk of depression during the third trimester.

When the investigators looked at iron and vitamin D status during the second trimester:

  • 14.8% of the women were low in vitamin D but had adequate iron levels.
  • 18.4% of the women were low in iron but had adequate levels of vitamin D.
  • 3.5% of the women were low in both iron and vitamin D.

But the important question is whether the iron and vitamin D insufficiencies seen in this study mattered. The data suggested that they did.

  • For pregnant women with low iron, but adequate vitamin D levels in the second trimester, there was a small, but significant, increased risk of experiencing depression symptoms in the third trimester.
  • For pregnant women with low iron and vitamin D levels in the second trimester, the risk of experiencing depression symptoms in the third trimester increased by 2.2 points in the 30-point Edinburg Depression Scale.
  • This is equivalent to a 7.4% increased risk of depression from deficiencies of iron and vitamin D alone.

When you consider that iron and vitamin D are just two of 8 or more nutrients thought to be important for preventing depression during pregnancy, the question becomes what you can do to decrease your risk of developing depression during pregnancy and after the birth of your child.

For more details about the study and what it means for you, read the article above.

These statements have not been evaluated by the Food and Drug Administration. This information is not intended to diagnose, treat, cure, or prevent any disease.

 ____________________________________________________________________________

My posts and “Health Tips From the Professor” articles carefully avoid claims about any brand of supplement or manufacturer of supplements. However, I am often asked by representatives of supplement companies if they can share them with their customers.

My answer is, “Yes, as long as you share only the article without any additions or alterations. In particular, you should avoid adding any mention of your company or your company’s products. If you were to do that, you could be making what the FTC and FDA consider a “misleading health claim” that could result in legal action against you and the company you represent.

For more detail about FTC regulations for health claims, see this link.

https://www.ftc.gov/business-guidance/resources/health-products-compliance-guidance

___________________________________________________________________________

About The Author

Dr. Chaney has a BS in Chemistry from Duke University and a PhD in Biochemistry from UCLA. He is Professor Emeritus from the University of North Carolina where he taught biochemistry and nutrition to medical and dental students for 40 years.  Dr. Chaney won numerous teaching awards at UNC, including the Academy of Educators “Excellence in Teaching Lifetime Achievement Award”. Dr Chaney also ran an active cancer research program at UNC and published over 100 scientific articles and reviews in peer-reviewed scientific journals. In addition, he authored two chapters on nutrition in one of the leading biochemistry text books for medical students.

Since retiring from the University of North Carolina, he has been writing a weekly health blog called “Health Tips From the Professor”. He has also written two best-selling books, “Slaying the Food Myths” and “Slaying the Supplement Myths”. And most recently he has created an online lifestyle change course, “Create Your Personal Health Zone”. For more information visit https://chaneyhealth.com.

For the past 45 years Dr. Chaney and his wife Suzanne have been helping people improve their health holistically through a combination of good diet, exercise, weight control and appropriate supplementation.

What Nutrients Are Missing In Prenatal Supplements?

Do These Deficiencies Matter?

Author: Dr. Stephen Chaney

healthy pregnancyIf you are a pregnant mom, nothing is more important than the health of your baby. And if you are pregnant or thinking of becoming pregnant, your doctor has probably recommended a prenatal supplement. But does the prenatal supplement he or she recommended provide you with all the nutrients you need?

In a previous issue of “Health Tips From the Professor” I shared two studies that suggested the answer is, “No”. Those studies concluded that most prenatal supplements had little or no vitamin K, choline, DHA, and iodine – all of which are essential for the health of your newborn baby. And while most prenatal supplements contained calcium, the amount they provided was far below recommended levels.

The authors of the first study also made the point that most women going on a prenatal supplement will probably discontinue taking their multivitamin supplement, so a good prenatal supplement should provide all the essential nutrients.

But they don’t. Folic acid, iron, calcium, and vitamin D have long been recognized as essential for a healthy pregnancy. So, virtually every prenatal supplement contained these four nutrients, although calcium is often present in suboptimal amounts. Beyond those four nutrients, the design of prenatal supplements is haphazard. Some contain vitamin K, choline, iodine, or DHA (often in suboptimal amounts). But almost none contain all four nutrients.

And when you consider the other essential nutrients you find in most multivitamins, prenatal supplements often come up empty. Is that a problem? That’s what this study (KM Godfrey et al, PLOS Medicine, 1-27, December 5, 2023) was designed to find out.

How Was This Study Done?

clinical studyThis was a double-blind, placebo-controlled clinical trial, the gold standard for clinical studies. The investigators recruited 1,729 women who were planning to get pregnant from England, Singapore, and New Zealand between 2015 and 2017.

The women were randomly split into two groups:

  • The control group received a supplement containing nutrients that were most frequently included in prenatal supplements in those countries (folic acid, iron, calcium, iodine, and beta-carotene).
  • The intervention group received a supplement containing those nutrients plus riboflavin, vitamin B6, vitamin B12, vitamin D, zinc, inositol, and probiotics).
  • Riboflavin, vitamin B6, vitamin B12, vitamin D, and zinc were included because they are included in most multivitamins but are often missing in prenatal supplements.
  • Inositol was included because some studies have suggested that inositol may reduce the risk of maternal hyperglycemia and gestational diabetes.

Blood samples to assess nutritional status were obtained from all women in the study before the trial started (baseline) and after 1 month of supplementation with either the control or intervention formulation.

Of the women entering the study, 512 went on to have a singleton (one child) pregnancy. For these women supplementation was continued until childbirth. Additional blood samples were obtained in early and late pregnancy and at 6 months postdelivery. [Note: no supplementation was provided to either group postdelivery. And this is also a period of time when most women would be breastfeeding.]

The blood samples were tested for:

  • Blood levels of folic acid, riboflavin, vitamin B6, vitamin B12, and vitamin D.
  • Functional biomarkers of deficiencies of each of these vitamins.

What Nutrients Are Missing In Prenatal Supplements?

Question MarkThere was no difference in maternal hyperglycemia or gestational diabetes between the control group and the intervention group supplemented with inositol, so I will focus on the other nutrients present in the intervention group.

At baseline when subjects were first entered into the study.

  • 29.2% of the subjects had low or marginal status for folic acid.
  • 82.0% of the subjects had low or marginal status for riboflavin.
  • 1.3% of the subjects had low or marginal status for vitamin B6.
  • 9.1% of the subjects had low or marginal status for vitamin B12.
  • 48.7% of the subjects had low or marginal status for vitamin D.
  • 91.0% of the subjects had low or marginal status for one or more of these vitamins.

In the control group receiving folic acid but no riboflavin, vitaminB6, vitamin B12, and vitamin D:

  • Folic acid deficiency fell to 4.1% after 1 month of supplementation (the supplement used by the control group contained folic acid), 1% in early pregnancy, 6.1% in late pregnancy, and rose to 31.8% 6 months after supplementation was discontinued. The intervention group got the same amount of folic acid, and their results were similar.
  • Riboflavin deficiency ranged from 82-92% during pregnancy and returned to 82% 6 months postdelivery.
  • Vitamin B6 deficiency increased to 54% in late pregnancy and returned to 1.2% 6 months postdelivery.
  • Vitamin B12 deficiency increased to 55% in late pregnancy and returned to 12.4% 6 months postdelivery.
  • Vitamin D deficiency ranged from 35-43% during pregnancy and returned to 31% 6 months postdelivery.
  • Functional markers of vitamin B6 deficiency were evident by late pregnancy.

In short, data from the control group fell into 3 categories:

  • The data with folic acid confirm previous studies showing that folic acid in the amount present in most prenatal supplements is effective at preventing folic acid deficiency before and during pregnancy. It also strengthens the argument for continuing folic acid supplementation during breastfeeding.
  • Deficiencies of riboflavin and vitamin D are prevalent in women of childbearing age, but pregnancy does not appear to significantly impact the percentage of women who are deficient in these nutrients.
  • Deficiencies of vitamins B6 and B12 are rare in women of childbearing age, but pregnancy significantly depletes both nutrients.
    • This was particularly evident for vitamin B6. Blood levels of vitamin B6 markers decreased to a level that could impact the functioning of vitamin B6-depended metabolic pathways.

pregnant women taking vitaminsFor the intervention group receiving additional riboflavin, vitamin B6, vitamin B12, and vitamin D:

  • Deficiencies of these vitamins were eliminated by one month of supplementation.
  • Vitamin levels remained adequate during pregnancy.
  • Except for vitamin B12, deficiencies of these vitamins reappeared when supplementation was discontinued for 6 months. The maintenance of adequate B12 levels 6 months after supplementation stopped was expected because the body holds on to its B12 stores very tightly.

In short deficiencies of these nutrients before and during pregnancy could be eliminated by supplementation with levels of these nutrients found in many multivitamins.

The authors concluded, “Over 90% of the trial participants had low concentrations of one or more of folate, riboflavin, vitamin B12, or vitamin D during preconception, and many developed markers of vitamin B6 deficiency in late pregnancy. Preconception/pregnancy supplementation in amounts available in over-the-counter supplements substantially reduces the prevalence of vitamin deficiency and depletion markers before and during pregnancy, with higher maternal plasma vitamin B12 maintained during the recommended lactation period.”

Do These Deficiencies Matter?

New ParentsIt is well established that deficiencies of folic acid and vitamin D cause health risks for the mother and developmental risks for the fetus, so I won’t discuss these nutrients here.

However, the effect of riboflavin, vitamin B6, and vitamin B12 deficiencies on pregnancy is less well known, which is probably why these nutrients are often not added to prenatal supplements.

The authors of the study said small studies have suggested that:

  • Low or deficient riboflavin status may be associated with a higher risk of anemia during pregnancy.
  • Low vitamin B6 status may be associated with an increased risk of preterm birth and development of metabolic health risks in the child.
  • Low vitamin B12 status may be associated with increased risk of gestational diabetes and pre-eclampsia in the mother, and increased risk of neural tube defects, preterm birth, low birth weight, and neurocognitive delays in the baby – with the strongest evidence being an effect on neurocognitive development.

While none of these risks have been definitively proven, the authors point out that deficiencies of these nutrients can easily be eliminated with inexpensive, over-the-counter multivitamin supplements.

What Does This Study Mean For You?

Questioning WomanPerhaps I should start this section by asking why these deficiencies are so common in women of child-bearing age.

The authors speculate that part of the reason is that many women are giving up meat (B12 and iron) and dairy (calcium and riboflavin) for health or environmental reasons.

However, they also point out that a more likely cause is that more than 60% of calories consumed in countries like England, New Zealand, and the United States comes from ultra-processed foods – otherwise known as “empty calories”.

Whatever the cause, the authors conclude, “…the findings suggest a need to reappraise dietary recommendations for preconception and pregnancy to consider further the role of multiple micronutrient supplements for women living in higher-income countries.” I agree.

In a previous “Health Tips From the Professor” article, I reported a recent study showing that most prenatal supplements have either no or inadequate amounts of vitamin K, choline, DHA, iodine, and calcium, nutrients that are absolutely essential for a healthy pregnancy. And I gave recommendations for choosing the best prenatal supplement for you and your child.

That study also noted that many women discontinue their multivitamin supplement when they start taking a prenatal supplement. The current study indicates that practice may be unwise. It shows that:

  • Many women of childbearing age are deficient in one or more of these essential nutrients, and…
  • Essential nutrients not found in most prenatal supplements may also be important for a healthy pregnancy.

So, if you are pregnant or thinking of becoming pregnant, follow this article’s recommendation to start with a well-designed prenatal supplement that provides adequate amounts of folate, iron, calcium, vitamin D, vitamin K, choline, DHA, and iodine and add a multivitamin supplement that provides the other essential nutrients. Alternatively, a simpler approach would be to choose a well-designed prenatal supplement that includes all the essential nutrients. That would be my recommendation.

I would also note this study showed that deficiencies of most of these nutrients reappeared as soon as supplementation was discontinued. Although the authors of this study did not mention it, this reinforces the importance of continuing supplementation during breastfeeding.

The Bottom Line

I have previously reported on a study that concluded many prenatal supplements lack one or more nutrients shown to be important for a healthy pregnancy. But let’s say you have found a prenatal supplement that provides all those nutrients. Is that enough?

Studies show that most women stop taking their multivitamin supplement when they start on a prenatal supplement. But is that a good idea? Are there essential nutrients found in multivitamins, but not in many prenatal supplements that are also important for a healthy pregnancy?

A recent study asked that question in women who were trying to become pregnant. The study found that:

  • Many women of childbearing age are deficient in one or more essential nutrients found in multivitamin supplements but often missing in prenatal supplements, and…
  • Essential nutrients not found in most prenatal supplements may also be important for a healthy pregnancy.

For more details about this study and what it means for you read the article above.

These statements have not been evaluated by the Food and Drug Administration. This information is not intended to diagnose, treat, cure, or prevent any disease.

 ______________________________________________________________________________

My posts and “Health Tips From the Professor” articles carefully avoid claims about any brand of supplement or manufacturer of supplements. However, I am often asked by representatives of supplement companies if they can share them with their customers.

My answer is, “Yes, as long as you share only the article without any additions or alterations. In particular, you should avoid adding any mention of your company or your company’s products. If you were to do that, you could be making what the FTC and FDA consider a “misleading health claim” that could result in legal action against you and the company you represent.

For more detail about FTC regulations for health claims, see this link.

https://www.ftc.gov/business-guidance/resources/health-products-compliance-guidance

 ______________________________________________________________________

About The Author 

Dr. Chaney has a BS in Chemistry from Duke University and a PhD in Biochemistry from UCLA. He is Professor Emeritus from the University of North Carolina where he taught biochemistry and nutrition to medical and dental students for 40 years.  Dr. Chaney won numerous teaching awards at UNC, including the Academy of Educators “Excellence in Teaching Lifetime Achievement Award”. Dr Chaney also ran an active cancer research program at UNC and published over 100 scientific articles and reviews in peer-reviewed scientific journals. In addition, he authored two chapters on nutrition in one of the leading biochemistry text books for medical students.

Since retiring from the University of North Carolina, he has been writing a weekly health blog called “Health Tips From the Professor”. He has also written two best-selling books, “Slaying the Food Myths” and “Slaying the Supplement Myths”. And most recently he has created an online lifestyle change course, “Create Your Personal Health Zone”. For more information visit https://chaneyhealth.com.

For the past 45 years Dr. Chaney and his wife Suzanne have been helping people improve their health holistically through a combination of good diet, exercise, weight control and appropriate supplementation.

Can You Slow The Aging Process?

A Holistic Approach To Living Healthy Longer

Author: Dr. Stephen Chaney 

Fountain Of YouthEver since Ponce de Leon’s famed 1513 expedition, people have been searching for the proverbial “Fountain of Youth”.

There have been hucksters selling pills and potions to reverse the aging process. Most of them didn’t work. They were no better than snake oil.

There have been legitimate scientists investigating the effect of supplements, diets, and lifestyle on the aging process. Most of these studies have come up empty.

In this study (M Gagesch et al, Journal of Frailty And Aging, 12: 71-77, 2023) the authors hypothesized that a holistic approach might be better than individual interventions. They asked whether a combination of vitamin D3 supplementation, omega-3 supplementation, and exercise might be more effective at slowing the aging process than any one of them alone.

There was good reason for choosing each of these interventions:

  • Low 25-hydroxyvitamin D levels have been associated with frailty in several studies. But association studies do not prove cause and effect, and no randomized, placebo control studies have measured the effect of vitamin D supplementation on frailty.
  • Omega-3 fatty acids have been linked to skeletal muscle health, and some studies have suggested omega-3 supplementation may improve muscle function in older adults.
  • A recent study has reported that a supervised exercise program reduced frailty in older adults. The authors wanted to see if the same was true for unsupervised, at-home exercise program.

How Was This Study Done?

clinical studyThe data from this study were collected as part of the DO-HEALTH study, a 3-year, double-blind, randomized, placebo-controlled clinical trial designed to identify interventions that support healthy aging in European adults aged 70 and older.

Initially, 2,157 healthy, community-dwelling adults were enrolled from five countries (Switzerland, Germany, Austria, France, and Portugal). They were examined in clinical centers at the beginning of the study and years 1, 2, and 3, with phone follow-up at 3-month intervals.

Aging was measured by something called the frailty index. At each clinic visit the participants were evaluated in five areas:

  1. Weakness was measured as grip strength. Weakness was defined as being in the lowest quintile of grip strength for someone their age and gender.

2) Fatigue was defined as a positive answer to the question, “In the last month have you had too little energy to do the things you wanted to do?”

3) Involuntary weight loss was defined as >5% weight loss within a year.

4) Low gait speed was defined as <2 ft/sec walking speed.

5) Low activity level was defined as a response of, “Less than once a week” to the question, “How often do you engage in activities that require a low or moderate level of energy such as gardening, cleaning the car, or going on a walk?”

    • Participants with 0 positive items were classified as robust.
    • Those with 1 or 2 positive items were classified as pre-frail.
    • Those with 3 or more positive items were classified as frail.

Only those participants from the DO-HEALTH study classified as robust at the first clinical visit (1,137 participants) were included in this study. The study measured how many of them became pre-frail or frail during the average follow-up of 2.9 years.

The interventions were:

  • Capsules containing a total of 2,000 IU/day of vitamin D3 with sunflower oil capsules as a placebo.
  • Capsules containing a total of 1,000 mg of EPA and DHA in a 1:2 ratio with a sunflower oil capsule as a placebo.
  • Exercise consisting of an unsupervised strength-training routine for 30 minutes, 3 times per week.
  • In this case the control was an unsupervised joint-flexibility routine for 30 minutes, 3 times per week.

The interventions were done individually, two together (vitamin D + omega-3, vitamin D + exercise, omega-3 + exercise), and all three together (vitamin D + omega-3 + exercise).

The results were corrected for age, sex, and low-trauma falls in the preceding 12 months.

Finally, the study measured blood 25-hydroxyvitamin D levels and omega-3 levels at each office visit. They found:

  • 28% of the participants were deficient in vitamin D at the beginning of the study.
  • The interventions gave the expected increase in vitamin D and omega-3 status.

Can You Slow The Aging Process?

Older Couple Running Along BeachAt the end of 3 years:

  • 61.2% of the participants had declined from robust health to the pre-frail category.
  • 2.6% of the participants had declined from robust health to the frail category.

[Note: The terms “pre-frail” and “frail” are measures of aging which I have described above.]

The number of participants in the frail category were too small to obtain a statistically significant measure of the effects of vitamin D, omega-3s, and exercise on frailty, so I will only discuss the results measuring their effect on pre-frailty in this review. These results are:

  • None of these interventions had a statistically significant effect on aging by themselves, as measured by the transition from robust health to pre-frailty.
  • None of these interventions had a statistically significant effect on aging when combined in pairs, although the vitamin D3-omega-3 pair came close to significance (31% reduction in pre-frailty with a probability of 94% (probabilities of 95% and above are considered significant.))
  • However, the combination of vitamin D3, omega-3s, and exercise reduced the risk of aging by 39%, which was statistically significant (96% probability).

The authors concluded, “Robust, generally healthy and active older adults without major comorbidities [diseases], may benefit from a combination of high-dose, supplemental vitamin D3, marine omega-3s, and SHEP [unsupervised strength training] with regard to the risk of becoming pre-frail over 3 years.”

A Holistic Approach To Living Healthy Longer

holistic approachThis study was a double-blind, placebo-controlled study, which is the gold standard for clinical studies. It was also unusually large (1,137 participants) and long (3 years) for this kind of study.

It was also much better than most double-blind, placebo-controlled studies in that it included three interventions (vitamin D3 supplementation, omega-3 supplementation, and exercise) and looked at their effect on aging individually, in pairs, and all three together.

One take-home lesson from this study was that a holistic approach that included all 3 interventions was superior to any one of these interventions alone or in pairs.

But the most important take-home lesson is this:

If you asked your doctor what you should do to slow the aging process, he or she would probably tell you, “Exercise may help, but forget supplementing with extra vitamin D or omega-3s. They have no proven benefits.”

They would be correct based on studies of each of these interventions individually. And the studies they might quote would be double-blind, placebo-controlled studies, the gold standard of clinical studies.

But would that be the best advice. Clearly not. The best advice would be to follow a holistic approach and use all 3 interventions together.

Unfortunately, this is true for most studies of supplementation. Supplements are tested individually, as if they were “magic bullets”. And most of these studies come up short. They fail to find a significant benefit of supplementation.

Supplements are almost never tested holistically in combination with each other and other interventions, but that’s where the “magic” really happens.

If you are a regular reader of “Health Tips From The Professor”, this should come as no surprise to you. I have often shared the Venn diagram on the upper left and said that the sweet spot is when two or more of these interventions overlap.

Of course, this is the first study of its kind. More studies are needed. More importantly, we need studies to fill in the other parts of the Venn diagram. We need to ask about the effect of diet and obesity on aging. For example:

  • If we add a healthy diet to vitamin D, omega-3s, and exercise, can we reduce aging even more dramatically?
  • Is the effort it takes to lose excess weight worth it? Does adding it to diet, supplementation, and exercise reduce the aging process even more?

Of course, I think the answer to those questions is an unequivocal, “Yes”. Multiple studies have shown that both a healthy weight and a healthy diet help you live healthier longer.

But I am a scientist. Neither diet nor weight loss have been tested in combination with supplementation and exercise. I would like to see studies combining all these modalities in a single double-blind, placebo-controlled experiment.

So, what does this mean for you? If you want to slow the aging process, if you are in search of your personal “Fountain of Youth…

  • This study suggests that vitamin D3 supplementation (2,000 IU/day), omega-3 supplementation (1,000 mg of EPA + DHA), and an exercise program that emphasizes strength training can help you slow the aging process.

But that is only the beginning. I also recommend…

  • Including a healthy diet and a healthy weight in your anti-aging regimen.
  • Making sure your diet has enough protein and leucine, since older adults need more of both to maximize the benefits of strength training.
  • Including other supplements as evidence for their benefit in slowing the aging process becomes available.

The Bottom Line 

A recent double-blind, placebo-controlled study looked at the effect of vitamin D3 supplementation (2,000 IU/day), omega-3 supplementation (1,000 mg/day EPA + DHA in a 1:2 ratio), and an unsupervised strength training program on the aging process.

It differed from most other double-blind, placebo-controlled studies in that:

  • It was larger (1,137 participants) and longer (3 years) than most.
  • More importantly, each intervention was tested individually, in pairs, and all 3 together.

The study found that:

  • None of these interventions had a statistically significant effect on aging by themselves.
  • None of these interventions had a statistically significant effect on aging when combined in pairs, although the vitamin D3-omega-3 pair came close to significance.
  • However, the combination of vitamin D3, omega-3s, and exercise reduced the risk of aging by a statistically significant 39%.

One take-home lesson from this study was that a holistic approach that included all 3 interventions was superior to any one of these interventions alone or in pairs.

But the most important take-home lesson is this:

If you asked your doctor what you should do to slow the aging process, he or she would probably tell you, “Exercise may help, but forget supplementing with extra vitamin D or omega-3s. They have no proven benefits.”

They would be correct based on studies of each of these interventions individually. And the studies they might quote would be double-blind, placebo-controlled studies, the gold standard of clinical studies.

But would that be the best advice? Clearly not. The best advice would be to follow a holistic approach and use all 3 interventions together.

Unfortunately, this is true for most studies of supplementation. Supplements are tested individually, as if they were “magic bullets”. And most of these studies come up short. They fail to find a significant benefit of supplementation.

Supplements are almost never tested holistically in combination with each other and other interventions, but that’s where the “magic” really happens.

For more information on this study and my recommendations on how to slow the aging process read the article above.

These statements have not been evaluated by the Food and Drug Administration. This information is not intended to diagnose, treat, cure, or prevent any disease.

 ___________________________________________________________________________

My posts and “Health Tips From the Professor” articles carefully avoid claims about any brand of supplement or manufacturer of supplements. However, I am often asked by representatives of supplement companies if they can share them with their customers.

My answer is, “Yes, as long as you share only the article without any additions or alterations. In particular, you should avoid adding any mention of your company or your company’s products. If you were to do that, you could be making what the FTC and FDA consider a “misleading health claim” that could result in legal action against you and the company you represent.

For more detail about FTC regulations for health claims, see this link.

https://www.ftc.gov/business-guidance/resources/health-products-compliance-guidance

Is Vegan Breast Milk Sufficient?

What Can Vegan Moms Do?

Author: Dr. Stephen Chaney 

breastfeedingA whole food vegan diet is incredibly healthy:

  • Vegans are less likely to be overweight than the general population.
  • Vegans have a lower risk of diabetes, heart disease, cancer, hypertension, and several other diseases than the general population.
  • Whole food vegan diets are anti-inflammatory, so they lower the risk of autoimmune diseases and the “itis” diseases.

But vegan diets leave out meat, dairy, and eggs. Vegetarians without proper dietary advice are at high risk of inadequate intake of vitamin B12, vitamin D, iron, iodine, calcium, and DHA. And, of course, the risk of inadequate intake is even greater for vegans than it is for vegetarians, who may include some dairy and eggs in their diet.

So, it is legitimate to ask whether a vegetarian or vegan diet is sufficient for pregnancy and lactation. The short answer is that they can be if they are properly designed and properly supplemented.

But that is not an easy task, as evidenced by a recent study (N Ureta-Velasco et al., Nutrients 15:1855, 2023) comparing the breast milk of omnivore moms with the breast milk of vegetarian and vegan moms.

How Was This Study Done?

clinical studyThis study was done with 92 omnivore moms, 9 vegetarian moms (5-ovo-vegetarian and 4 lacto-ovo-vegetarians) and 11 vegan moms between August 2017 and February 2020 at the Regional Human Milk Bank at the “12 de Octubre” University Hospital in Madrid, Spain. The vegetarian and vegan moms were grouped together for data analysis.

On Day 0 of the study, participants went to the regional milk bank for blood and urine samples to determine nutritional status, a screening to determine health and socioeconomic status, and for food frequency questionnaire to characterize their habitual diet.

On days 1-5, they returned to the regional milk bank with a 24-hour diet recall of the previous day and to express 25 ml of breast milk to determine its nutrient content. On day 6, they returned to express a larger sample of breast milk to determine its lipid content (including EPA and DHA).

Note: Both the food frequency questionnaire and the 24-hour dietary recalls included nutrients derived from supplements.

What Did The Study Show About Dietary Intake of Key Nutrients?

Questioning WomanThis was a comprehensive study, so I will just cover the highlights here:

Birth Weight: Compared to the children of omnivore moms, the children of vegetarian/vegan moms were more likely to:

  • Have less weight gain during pregnancy (2 pounds less on average).
  • Be underweight at birth (60% of babies born to vegetarian/vegan moms were in the underweight category of birth weights versus 25% for babies born to omnivore moms).

This is probably because vegetarian/vegan moms:

  • Consumed slightly fewer calories per day (2146 versus 2319).
  • Consumed significantly less protein (67 g/d versus 96 g/d).
  • Were 10 times more likely to be underweight prior to pregnancy (10% versus 1%).

This is a concern because low birth weight increases the risk of physical and mental health issues later in life.

Supplement Use: The nutrients of greatest concern in a vegetarian/vegan diet are vitamin B12, vitamin D, iron, iodine, calcium, and DHA. For all these nutrients except DHA, this message appears to have gotten out to most vegetarian/vegan mothers because they were compensating for these potential deficiencies through supplementation.

For example, when they looked at average daily intake of these key nutrients from supplements, they found:

Nutrient Vegetarian/Vegan Moms Omnivore Moms
Vitamin D 1,080 IU (27mcg) 240 IU (6 mcg)
Folic acid 400 mcg 280 mcg
Vitamin B12 312 mcg 2 mcg
Calcium 566 mg 164 mg
Iron 40 mg 29 mg
DHA 100 mg 180 mg

However, that doesn’t tell the whole story, because not all vegetarian/vegan moms took supplements. When the investigators looked at the percent taking supplements, this is what they found.

Nutrient Vegetarian/Vegan Moms Omnivore Moms
Vitamin D 50% 50%
Folic acid 35% 61%
Vitamin B12 85% 60%
Calcium 15% 37%
Iron 25% 43%
DHA 10% 16%

Dietary Intake (Food + Supplements): The extra supplementation clearly played an important role because when the investigators looked at the overall intake from food and supplements, they found:

Nutrient Vegetarian/Vegan Moms Omnivore Moms
Vitamin D 224 IU (5.6 mcg) 432 IU (10.8 mcg)
Folate + Folic acid 668 mcg 473 mcg
Vitamin B12 258 mcg 6.9 mcg
Calcium 910 mg 1148 mg
Iron 31 mg 25 mg
DHA 110 mg 380 mg

Again, this doesn’t tell the whole story. Some women didn’t supplement. When the investigators looked at the percentage of women getting an inadequate intake of key nutrients from food plus supplements they found:

Nutrient Vegetarian/Vegan Moms Omnivore Moms
Vitamin D 75% 88%
Folate + Folic acid 0% 39%
Vitamin B12 25% 0%
Calcium 45% 40%
Iron Not reported Not reported
DHA Not reported Not reported

These results clearly show the need for supplementation. While the average intake from food plus supplements looked good, there were a significant percentage of women who weren’t getting adequate intake of key nutrients because they didn’t supplement.

The exceptions were folate + folic acid for vegetarian/vegans because their diet is rich in folate-containing foods and vitamin B12 for omnivores because their diet is rich in foods containing B12.

Is Vegan Breast Milk Sufficient?

Of course, the proof is in the pudding. When the investigators looked at the nutrient content of breast milk, this is what they found:

Nutrient Vegetarian/Vegan

Moms

Omnivore

Moms

Reference

Value*

Vitamin D3 1.1 mcg/L 3.4 mcg/L 0.25-2 mcg/L
Folate + Folic acid 19 mcg/L 20 mcg/l 80 mcg/L
Vitamin B12 0.74 mcg/L 0.65 mcg/L 0.5 mcg/L
Calcium 83 mg/L 99 mg/L 200-300 mg/L
Iron Not reported Not reported
DHA 0.15 g/100 g fat 0.33 g/100 g fat 0.35 g/100 g fat

*Reference values established by WHO

  • The chief difference between breast milk from vegetarian/vegan moms was in DHA levels.
  • That’s because the diet of vegetarians and vegans contains very little DHA, and very few vegetarian/vegan women in this study supplemented with DHA.
  • This study also found that breast milk from both vegetarian/vegan moms and omnivore moms was low in folate + folic acid, calcium, nicotinamide, and selenium. They said that requires follow-up in future studies.

The authors concluded, “The most important contribution of this study is the detailed and comprehensive description of micronutrients and lipids in human milk from omnivore milk donors and vegetarian/vegan women…Of particular concern is the lower DHA content in the milk of our vegetarian/vegan group. However, raising awareness and administering proper supplementation could bridge the gap, as has been the case with vitamin B12.”

What Can Vegan Moms Do?

This study emphasizes the importance of careful planning and supplementation during pregnancy and lactation if you are a vegetarian or vegan mom.

For example, the vegetarian/vegan women in this study were more likely to have low birthweight babies, and low birthweight infants are at risk for health issues later in life. That means:

  • Careful planning is required to select calorie- and protein-rich plant foods.
  • A high-quality plant protein supplement can be a great help.

Supplementation is particularly important during lactation to assure your breast milk adequately nourishes your newborn baby. For example, in this study:

  • The vitamin B12 level in the breast milk from vegetarian/vegan moms was adequate because 85% of them supplemented with vitamin B12.
  • The DHA level in the breast milk from vegetarian/vegan moms was inadequate because only 10% of them supplemented with DHA.
  • The authors of this study recommended that vegetarian and vegan moms consume at least 200 mg of DHA from algal sources while they are breastfeeding.

However, finding a prenatal supplement that provides all the nutrients you need prior to pregnancy, during pregnancy, and while breastfeeding is challenging. I gave you 7 tips for choosing the best prenatal supplements in a previous “Health Tips From the Professor” article.

The Bottom Line 

A recent study asked whether the breast milk of vegetarian and vegan moms was sufficient for the needs of their newborn babies. The study found that:

  • Folate levels in their breast milk were sufficient because the diets of vegetarians and vegans contain many folate-rich foods.
  • Vitamin B12 levels in their breast milk were sufficient because 85% of the vegetarian and vegan women in this study supplemented with vitamin B12.
  • DHA levels in their breast milk were insufficient because the diets of vegetarian and vegan women are very low in DHA, and only 10% of the women in this study supplemented with DHA.
  • The authors of this study recommended that vegetarian and vegan moms consume at least 200 mg of DHA from algal sources while they are breastfeeding.

This study reinforces the need for supplementation during lactation to assure your breast milk adequately nourishes your newborn baby.

However, finding a prenatal supplement that provides all the nutrients you need prior to pregnancy, during pregnancy, and while breastfeeding is challenging. I gave you 7 tips for choosing the best prenatal supplement in a previous “Health Tips From the Professor” article.

For more information on this study read the article above.

These statements have not been evaluated by the Food and Drug Administration. This information is not intended to diagnose, treat, cure, or prevent any disease.

___________________________________________________________________________

My posts and “Health Tips From the Professor” articles carefully avoid claims about any brand of supplement or manufacturer of supplements. However, I am often asked by representatives of supplement companies if they can share them with their customers.

My answer is, “Yes, as long as you share only the article without any additions or alterations. In particular, you should avoid adding any mention of your company or your company’s products. If you were to do that, you could be making what the FTC and FDA consider a “misleading health claim” that could result in legal action against you and the company you represent.

For more detail about FTC regulations for health claims, see this link.

https://www.ftc.gov/business-guidance/resources/health-products-compliance-guidance

 

 

Prenatal Supplements Strike Out Again

Is It Three Strikes And You Are Out?

Author: Dr. Stephen Chaney

Pregnant CoupleIf you are pregnant, you want the best for your unborn baby. Your doctor has recommended a prenatal supplement, but do the prenatal supplements on the market meet your needs? A few months ago, I shared two studies that concluded that most prenatal supplements on the market are woefully inadequate.

In fact, the authors said, “[Our] analysis found that prenatal supplements vary widely in content, often only contain a subset of essential vitamins, and the levels were often below…recommendations.”

In other words, their study found that most prenatal vitamins on the market may not be adequate to support your needs and the needs of your child through pregnancy and breastfeeding.

Now, a third study on the topic has been published (KA Saunders et al, American Journal of Clinical Nutrition, 117: 823-829, 2023. It differs from the previous studies in that:

1) The previous two studies took a comprehensive approach, while this study focused on 6 key nutrients.

  • The previous studies included all nutrients important for a healthy pregnancy including choline, iodine, and vitamin K, which have only recently been shown to be important for a healthy pregnancy.
  • This study focused on 6 nutrients, vitamin A, vitamin D, folic acid, calcium, iron, and omega-3 fatty acids, which have long been recognized as essential for a healthy pregnancy.

2) The previous two studies focused on prenatal supplements, while this study focused on all supplements that might be taken by pregnant women.

3) The previous two studies asked whether supplements provided recommended amounts of all nutrients needed for a healthy pregnancy. This study took a “Goldilocks approach” and asked whether levels of these 6 essential nutrients were appropriate (“just right”). The study:

  • Started by determining the intake of these 6 key nutrients by American women. The authors of the study then added the amount of each nutrient provided by the supplements in their study to the amount of that nutrient in the diet of American women and:
    • Calculated the minimum amount of each nutrient that would be needed to assure that 90% of American women taking a particular supplement would meet the recommended intake for pregnant and lactating women.
    • Calculated the maximum amount of each nutrient provided by supplements in their study to assure that that 90% of American women taking that supplement would not get potentially toxic amounts of that nutrient.
  • In other words, for each of the 6 nutrients they calculated a supplemental dose range that was neither too low nor too high. They called this the “appropriate dose range” for each nutrient. Goldilocks would have called it “just right”.

I’m sure you are anxiously waiting to learn what their study found. But before we go there, I will describe how the study was done.

How Was The Study Done?

clinical studyFor the dietary intake portion of the study, the authors used dietary intake data previously collected from the Environmental Influences on Child Health Outcomes (ECHO) study.

The ECHO study is a consortium of 69 medical centers across multiple states. It is an observational study of mothers and their offspring designed to understand the effects of early life exposures on child health and development.

The current study analyzed dietary intake data for 2450 participants from 6 medical centers across 5 states in the ECHO study. The women in this study were diverse with respect to ethnicity, education, and weight.

All pregnant women in the current study completed at least one 24-hour dietary recall between 6-week gestation until delivery (24% completed one dietary recall. 76% completed two or more dietary recalls). Dietary intake was generally assessed with an expert interviewer and included all foods and beverages consumed in the previous 24 hours.

For the supplement portion of the study, the authors used the NIH Dietary Supplement Label Database because it is the most complete listing of supplements in the US. The authors selected 20,547 supplements that contained at least one of the 6 essential nutrients from this database.

To determine which of the 20,547 supplements contained appropriate levels of the 6 nutrients (vitamin A, vitamin D, folic acid, calcium, iron, and omega-3 fatty acids) selected for this study, the authors used the process described in the introduction above. Briefly:

  • The authors added the amount of each nutrient provided by the supplements in their study to the amount of that nutrient in the diet of American women and:
  • Calculated the minimum amount of each nutrient that would be needed to assure that 90% of American women taking a particular supplement would meet the recommended intake for pregnant and lactating women.
  • Calculated the maximum amount of each nutrient provided by supplements in their study to assure that that 90% of American women taking that supplement would not get potentially toxic amounts of that nutrient.

In other words, for each of the 6 nutrients they calculated a supplemental dose range that was neither too low nor too high. They called this the “appropriate dose range” for each nutrient.

Why Are The 6 Nutrients Included In This Study Important?

Dietary Intake Is Often Inadequate

The diet analysis of pregnant American women in this study found:

  • 42% were at risk of inadequate vitamin A intake.
  • 96% were at risk of inadequate vitamin D intake.
  • 45% were at risk of inadequate folic acid intake.
  • 55% were at risk of inadequate calcium intake.
  • 93% were at risk of inadequate iron intake.
  • 67% were at risk of inadequate omega-3 intake.

The percentage of women at risk for inadequate intake of these nutrients varied with age, ethnicity, and income levels. But the overall message is clear. Most American women are not getting enough of these essential nutrients from their diet alone.

The Risk of Inadequate and Excessive Intake Of These Nutrients

These 6 nutrients were chosen in part because reviews by the Cochrane Collaboration have concluded that inadequate intake of these nutrients are associated with complications during pregnancy and delivery. They can also adversely affect the health and normal development of the baby.

This is important because the Cochrane Collaboration is considered the Gold Standard of clinical studies. You can find a more detailed description of Cochrane Collaboration studies and why they are the Gold standard here.

[Note: The Cochrane Collaboration has not yet evaluated choline, iodine, and vitamin K for pregnant women, but their inclusion in prenatal supplements is supported by multiple clinical studies.]

In addition, excess intake of all these nutrients except omega-3s can harm both the fetus and the mother. The is why the Food and Nutrition Board has set ULs (Upper Limits – the level above which toxicity can occur) for 5 of the 6 nutrients. This is important because previous studies have suggested that up to 25% of women may be getting toxic levels of one or more of these nutrients when you consider both their dietary intake and their prenatal supplement.

Summary

In other words, both too little and too much of these nutrients can harm the mom and her baby. It is critical that prenatal supplements get the dosing right.

It is for that reason that the authors of this study have set an “appropriate dose range” (high enough that 90% of women have enough of each nutrient to prevent deficiency and low enough that 90% of women do not exceed the UL for each nutrient) as the standard for evaluating the adequacy and safety of supplements for pregnant women.

Prenatal Supplements Strike Out Again

Of the 20,547 supplements (421 labeled as prenatal supplements) available on the US market as of December 31, 2022, the investigators reported that:

  • Only 69 (0.3%) supplements contained all 6 nutrients considered essential for a healthy pregnancy.
  • Only 1 supplement contained all 6 nutrients at the appropriate doses, and it wasn’t even labeled as a prenatal supplement.

In addition:

  • One supplement containing all 6 nutrients put 100% of the women in their study at risk for excessive intake of folic acid.
  • Another supplement containing all 6 nutrients put 46% of the women in their study at risk of inadequate calcium intake.

The authors concluded, “Almost no US dietary supplements provide key nutrients in the doses needed for pregnant women. Affordable and convenient products that fill the gap between food-based intake and estimated requirements of pregnancy without inducing excess intake are needed to support pregnant women and their offspring.”

In short, the conclusion of this study can be summed up as, “Prenatal Supplements Strike Out Again”.

[Note: It sometime takes a while for supplement labels to be posted in the NIH Dietary Supplement Label Database. The authors acknowledged that this study may not include supplements introduced or reformulated in the last quarter of 2022.]

Is It Three Strikes And You Are Out? 

pregnant women taking vitaminsIf you are pregnant or thinking of becoming pregnant, this should be a wake-up call.

70% of pregnant women in this country take prenatal supplements, usually based on recommendations by their health care provider. They assume the prenatal supplements meet their needs and the needs of their unborn baby.

Yet three studies evaluating the adequacy of prenatal supplements have been published in the past few months. They took very different approaches in evaluating the supplements. But all three studies concluded that the vast majority of prenatal supplements on the market are woefully inadequate.

You may be wondering, “Is it three strikes, and you are out?” Are there no decent prenatal supplements on the market?  The answer to those questions is, “No. There are good prenatal supplements on the market.”

You may be wondering how I can say that in the face of such overwhelming negative data. That’s because while all 3 studies were very good studies, they each had “blind spots”:

1) Each of the studies used very stringent criteria for identifying adequate prenatal supplements. In some cases, their criteria were stricter than the RDA recommendations and the recommendations of the American College of Obstetrics and Gynecology for pregnant and lactating women. It could be argued that their criteria were too stringent.

2) In the case of the current study, it could also be argued that evaluating only 6 nutrients is not a good criterion for evaluating the adequacy of prenatal supplements. For example, I looked up the one supplement rated as adequate in this study. It does provide appropriate doses of the 6 nutrients this study focused on. It also provides appropriate doses of vitamin K and iodine. But it does not provide choline. It is a very good supplement for women, but it is not the perfect prenatal supplement.

So, what can you do? How can you find the best prenatal supplement for you? Unfortunately, you cannot rely on advice from your friends or your health professional. You cannot rely on advertisements. That is a good place to start, but you have to do your own sleuthing.

With that in mind, I have listed 7 simple rules for selecting the best possible prenatal supplement in  my article about the first two studies. Use these rules for evaluating every prenatal supplement you come across. Happy sleuthing.

The Bottom Line 

A recent study evaluated all 20,547 supplements on the US market to see if they met the needs of pregnant women in this country.

  • They focused on 6 nutrients (vitamin A, vitamin D, folic acid, calcium, iron, and omega-3s) known to be essential for a healthy pregnancy.
  • They determined the dietary intake for all 6 nutrients in a cross section of pregnant women in the US.
  • They added the amount of the 6 nutrients in each of the 20,547 supplements to the dietary intake of those nutrients by pregnant women.
  • They then asked which supplements provided the “appropriate dose” of all 6 nutrients. They defined “appropriate dose” as the dose range that was.
    • High enough to prevent deficiency of that nutrient in 90% of pregnant women taking the supplement…and…
    • Low enough to prevent toxicity from that nutrient in 90% of pregnant women taking the supplement.
  • In other words, for each of the 6 nutrients they calculated a supplemental dose range that was neither too low nor too high.

Of the 20,547 supplements (421 labeled as prenatal supplements) available on the US market:

  • Only 69 (0.3%) supplements contained all 6 nutrients they considered essential for a healthy pregnancy.
  • Only 1 supplement contained all 6 nutrients at the appropriate doses, and it wasn’t even labeled as a prenatal supplement.

The authors concluded, “Almost no US dietary supplements provide key nutrients in the doses needed for pregnant women. Affordable and convenient products that fill the gap between food-based intake and estimated requirements of pregnancy without inducing excess intake are needed to support pregnant women and their offspring.”

[Note: It sometime takes a while for supplement labels to be posted in the NIH Dietary Supplement Label Database. The authors acknowledged that this study may not include supplements introduced or reformulated in the last quarter of 2022 or early 2023.]

If you are pregnant or thinking of becoming pregnant, this should be a wake-up call.

70% of pregnant women in this country take prenatal supplements, usually based on recommendations by their health care provider. They assume the prenatal supplements meet their needs and the needs of their unborn baby.

Yet three studies evaluating the adequacy of prenatal supplements have been published in the past few months. And all three studies concluded that the vast majority of prenatal supplements on the market are woefully inadequate.

You may be wondering, “Is it three strikes, and you are out?” Are there no decent prenatal supplements on the market?  The answer to those questions is, “No. There are good prenatal supplements on the market.”

You may be wondering how I can say that in the face of such overwhelming negative data. That’s because while all 3 studies were very good studies, they each had “blind spots”:

For more details on this study and 7 tips on finding the best prenatal supplement for you, read the article above.

These statements have not been evaluated by the Food and Drug Administration. This information is not intended to diagnose, treat, cure, or prevent any disease. 

____________________________________________________________________________

My posts and “Health Tips From the Professor” articles carefully avoid claims about any brand of supplement or manufacturer of supplements. However, I am often asked by representatives of supplement companies if they can share them with their customers.

My answer is, “Yes, as long as you share only the article without any additions or alterations. In particular, you should avoid adding any mention of your company or your company’s products. If you were to do that, you could be making what the FTC and FDA consider a “misleading health claim” that could result in legal action against you and the company you represent.

For more detail about FTC regulations for health claims, see this link.

https://www.ftc.gov/business-guidance/resources/health-products-compliance-guidance

 

 

Vitamin D And ADHD

Can ADHD Be Prevented?

Author: Dr. Stephen Chaney 

vitamin dIf you are pregnant, or of childbearing age, should you be supplementing with vitamin D? Increasingly, the answer appears to be yes.

  1. Based on blood 25-hydroxy vitamin D levels (considered the most accurate marker of vitamin D status):
    • 8-11% of pregnant women in the US are deficient in vitamin D (<30 nmol/L).
    • 25% of pregnant women have insufficient vitamin D status (30-49 nmol/L).

In short, that means around 1/3 of pregnant women in the US have insufficient or deficient levels of vitamin D. The effect of inadequate vitamin D during pregnancy is not just an academic question.

2) The Cochrane Collaboration (considered the gold standard for evidence-based medicine) has recently concluded that supplementation with vitamin D reduces the risk of significant complications during pregnancy.

3) Another recent study found that inadequate vitamin D status during pregnancy delayed several neurodevelopmental milestones in early childhood, including gross motor skills, fine motor skills, and social development.

If neurodevelopmental milestones are affected, what about ADHD? Here the evidence is not as clear. Some studies have concluded that vitamin D deficiency during pregnancy increases the risk of ADHD in the offspring. Other studies have concluded there is no effect of vitamin D deficiency on ADHD.

Why the discrepancy between studies?

  • Most of the previous studies have been small. Simply put, there were too few children in the study to make statistically reliable conclusions.
  • Most of the studies measured maternal 25-hydroxyvitamin D levels in the third trimester or in chord blood at birth. However, it is during early pregnancy that critical steps in the development of the nervous system take place.

Thus, there is a critical need for larger studies that measure maternal vitamin D status in the first trimester of pregnancy. This study (M Sucksdorff et al, Journal of the American Academy of Child & Adolescent Psychiatry, 60: 142-151, 2021) was designed to fill that need.

How Was The Study Done?

Clinical StudyThis study compared 1,067 Finnish children born between 1998 and 1999 who were subsequently diagnosed with ADHD and 1,067 matched controls without ADHD. There were several reasons for choosing this experimental group.

  • Finland is among the northernmost European countries, so sun exposure during the winter is significantly less than for the United States and most other European countries. This time period also preceded the universal supplementation with vitamin D for pregnant women that was instituted in 2004.

Consequently, maternal 25-hydroxyvitamin D levels were significantly lower than in most other countries. This means that a significant percentage of pregnant women were deficient in vitamin D, something not seen in most other studies. For example:

  • 49% of pregnant women in Finland were deficient in vitamin D (25-hydoxyvitamin D <30 nmol/L) compared to 8-11% in the United States.
  • 33% of pregnant women in Finland had insufficient vitamin D status (25-hydroxyvitamin D 30-49.9 nmol/L) compared to 25% in the United States.
  • Finland, like many European countries, keeps detailed health records on its citizens. For example:
    • The Finnish Prenatal Study collected data, including maternal 25-hydroxyvitamin D levels during the first trimester), for all live births between 1991 and 2005.
    • The Care Register for Health Care recorded, among other things, all diagnoses of ADHD through 2011.

Thus, this study avoided the limitations of earlier studies. It was ideally positioned to compare maternal 25-hydroxyvitamin D levels during the first trimester of pregnancy with a subsequent diagnosis of ADHD in the offspring. The long-term follow-up was important to this study because the average age of ADHD diagnosis was 7 years (range = 2-14 years).

Vitamin D And ADHD 

Child With ADHDDoes maternal vitamin D affect ADHD in the offspring? The answer to this question appears to be a clear, yes.

If you divide maternal vitamin D levels into quintiles:

  • Offspring of mothers in the lowest vitamin D quintile (25-hydroxyvitamin D of 7.5-21.9 nmol/L) were 53% more likely to develop ADHD than offspring of mothers in the highest vitamin D quintile (49.5-132.5 nmol/L).

When you divide maternal vitamin D levels by the standard designations of deficient (<30 nmol/L), insufficient (30-49.9 nmol/L), and sufficient (≥50 nmol/L):

  • Offspring of mothers who were deficient in vitamin D were 34% more likely to develop ADHD than children of mothers with sufficient vitamin D status.

The authors concluded: “This is the first population-based study to demonstrate an association between low maternal vitamin D during the first trimester of pregnancy and an elevated risk for ADHD diagnosis in offspring. If these findings are replicated, they may have public health implications for vitamin D supplementation and perhaps changing lifestyle behaviors during pregnancy to ensure optimal maternal vitamin D levels.”

Can ADHD Be Prevented? 

Child Raising HandI realize that this is an emotionally charged title. If you have a child with ADHD, the last thing I want is for you to feel guilty about something you may not have done. So, let me start by acknowledging that there are genetic and environmental risk factors for ADHD that you cannot control. That means you could have done everything right during pregnancy and still have a child who develops ADHD.

Having said that, let’s examine things that can be done to reduce the risk of giving birth to a child who will develop ADHD, starting with vitamin D. There are two aspects of this study that are important to keep in mind.

#1: The increased risk of giving birth to a child who develops ADHD was only seen for women who were vitamin D deficient. While vitamin D deficiency is only found in 8-11% of pregnant mothers in the United States, that is an average number. It is more useful to ask who is most likely to be vitamin D deficient in this country. For example:

  • Fatty fish and vitamin D-fortified dairy products are the most important food sources of vitamin D. Fatty fish are not everyone’s favorite and may be too expensive for those on a tight budget. Many people are lactose intolerant or avoid milk for other reasons. If you are not eating these foods, you may not be getting enough vitamin D from your diet. This is particularly true for vegans.
  • If you have darker colored skin, you may have trouble making enough vitamin D from sunlight. If you are also lactose intolerant, you are in double trouble with respect to vitamin D sufficiency.
  • Obesity affects the distribution of vitamin D in the body. So, if you are overweight, you may have low 25-hydroxyvitamin D levels in your blood.
  • The vitamin D RDA for pregnant and lactating women is 600 IU, but many multivitamin and prenatal supplements only provide 400 IU. If you are pregnant or of childbearing age, it is a good idea to look for a multivitamin or prenatal supplement that provides at least 600 IU, especially if you are in one of the high risk groups listed above.
  • Some experts recommend 2,000 to 4,000 IU of supplemental vitamin D. I would not recommend exceeding that amount without discussing it with your health care provider first.
  • Finally, for reasons we do not understand, some people have a difficult time converting vitamin D to the active 25-hydroxyvitamin D and 1,25-dihydroxyvitamin D in their bodies. If you are pregnant or of childbearing age, it is a good idea to have your blood 25-hydroxyvitamin D levels determined and discuss with your health care provider how much vitamin D you should be taking. Many people need more than 600 IU to reach vitamin D sufficiency status.

#2: Maternal vitamin D deficiency has a relatively small effect (34%) on the risk of the offspring developing ADHD. That means assuring adequate vitamin D status during pregnancy should be part of a holistic approach for reducing ADHD risk. Other factors to consider are:No Fast Food

  • Low maternal folate and omega-3 status.
  • Smoking, drug, and alcohol use.
  • Obesity.
  • Sodas and highly processed foods.

Alone, each of these factors has a small and uncertain influence on the risk of your child developing ADHD. Together, they may play a significant role in determining your child’s risk of developing ADHD.

In closing, there are three take-home lessons I want to leave you with:

  1. The first is that there is no “magic bullet”. There is no single action you can take during pregnancy that will dramatically reduce your risk of giving birth to a child who will develop ADHD. Improving your vitamin D, folate, and omega-3 status; avoiding cigarettes, drugs, and alcohol; achieving a healthy weight; and eating a healthy diet are all part of a holistic approach for reducing the risk of your child developing ADHD.

2) The second is that we should not think of these actions solely in terms of reducing ADHD risk. Each of these actions will lead to a healthier pregnancy and a healthier child in many other ways.

3) Finally, if you have a child with ADHD and would like to reduce the symptoms without drugs, I recommend this article.

The Bottom Line 

A recent study looked at the correlation between maternal vitamin D status during the first trimester of pregnancy and the risk of ADHD in the offspring. The study found:

  • Offspring of mothers who were deficient in vitamin D were 34% more likely to develop ADHD than children of mothers with sufficient vitamin D status.

The authors concluded: “This is the first population-based study to demonstrate an association between low maternal vitamin D during the first trimester of pregnancy and an elevated risk for ADHD diagnosis in offspring. If these findings are replicated, they may have public health implications for vitamin D supplementation and perhaps changing lifestyle behaviors during pregnancy to ensure optimal maternal vitamin D levels.”

In the article above I discuss what this study means for you and other factors that increase the risk of giving birth to a child who will develop ADHD.

For more details read the article above.

These statements have not been evaluated by the Food and Drug Administration. This information is not intended to diagnose, treat, cure, or prevent any disease.

 

Does Low Vitamin D Make You Weak?

Why Is Vitamin D Research So Controversial?

Author: Dr. Stephen Chaney

vitamin dMillions of Americans lose muscle strength as they age, something called sarcopenia. This is not a trivial matter. Loss of muscle mass:

  • Leads to loss of mobility. It can also make it difficult to do simple things like lifting your grandchild or carrying a bag of groceries.
  • Increases your risk of falling. This often leads to serious fracture which increases your of dying prematurely. In fact, bone fractures increase your risk of dying by 3-fold or more. Even in those who recover their mobility and quality of life may never be the same.
  • Lowers your metabolic rate. This increases your risk of obesity and all the diseases that are associated with obesity.

Loss of muscle strength as we age is preventable. There are several things we can do to preserve muscle strength as we age, but in today’s article I will focus on the effect of vitamin D on muscle strength.

What if something as simple as preventing vitamin D deficiency could improve muscle strength as we age? That idea has been around for a decade or more. But, for reasons I will detail below, it has proven controversial. Let me start by sharing a recent study on vitamin D and muscle strength (N Aspell et al, Clinical Investigations in Ageing, volume 2019:14, pages 1751-1761).

How Was The Study Done?

Clinical StudyThe data for this study came from 4157 adults who were enrolled in the English Longitudinal Study On Aging. Participants in this study were all over the age of 60 and were still living in their own homes. The general characteristics of the study population were:

  • Their average age was 69.8 with 45% male and 55% female.
  • While 76% of the participants rated their health as “good” or above
    • 73% were overweight or obese.
    • 54% had a longstanding disease that limited mobility.
    • 29% were taking multiple medications.

Serum 25-hydroxy vitamin D levels were determined as a measure of vitamin D status.

  • 22% of the participants were vitamin D deficient (<30 nmol/L 25-hydroxy vitamin D).
  • 34% of the participants were vitamin D insufficient (between 30 and 50 nmol/L 25-hydroxy vitamin D).
  • 46% of the participants had adequate vitamin D status (>50 nmol/L 25-hydroxy vitamin D).

Muscle strength was assessed by a handgrip strength test with the dominant hand. Muscle performance was assessed with something called the short physical performance battery (SPPB), consisting of a walking speed test, a repeated chair raise test, and a balance test.

Does Low Vitamin D Make You Weak?

When the data on handgrip strength were analyzed:

  • Only 22% of the participants who had adequate vitamin D status had low handgrip strength.
  • 40% of participants who were vitamin D deficient had low handgrip strength. That’s almost a 2-fold difference.
  • Handgrip strength increased linearly with vitamin D status.
    • The relationship between vitamin D status and handgrip strength was highly significant (p<001).
    • The beneficial effect of vitamin D status on handgrip strength plateaued at around 55-69 nmol/L 25-hydroxy vitamin D. In other words, you need adequate vitamin D status to support muscle strength, but higher levels provide no additional benefit.

When the data on muscle performance (the SPPB test) were analyzed:

  • Only 8% of the participants who had adequate vitamin D status scored low on this test.
  • 25% of participants who were vitamin D deficient scored low on this test. That’s a 3-fold difference.
  • Muscle performance also increased linearly with vitamin D status.
    • The relationship between vitamin D status and muscle performance was also highly significant (p<001).
    • The beneficial effect of vitamin D status on muscle performance also plateaued at around 55-69 nmol/L 25-hydroxy vitamin D.

The authors concluded: “Vitamin D deficiency was associated with impaired muscle strength and performance in a large study of community-dwelling older people. It is generally accepted that vitamin D deficiency should be reversed to prevent bone disease. This strategy may also protect skeletal muscle function in aging.”

Why Is Vitamin D Research So Controversial?

ArgumentYou can be forgiven if you are saying to yourself: “I’ve heard this sort of thing before. I see a blog or headline claiming that vitamin D has a certain benefit, but it’s usually followed by later headlines saying those claims are false. Why can’t the experts agree? Is all vitamin D research bogus?”

The relationship between vitamin D status and muscle strength is no different.

  • Many, but not all, studies looking at the association between vitamin D status and muscle strength find that vitamin D status affects muscle strength.
  • However, many randomized, placebo-controlled clinical trials looking at the effect of vitamin D supplementation on muscle strength have come up empty.

A meta-analysis (L Rejnmark, Therapeutic Advances in Chronic Disease, 2: 25-37, 2011) of randomized, placebo-controlled clinical trials of vitamin D supplementation and muscle strength provides insight as to why so many of them come up empty.

The meta-analysis combined data from 16 clinical trials. The conclusions were similar to what other meta-analyses have found:

  • Seven of the studies showed a benefit of vitamin D supplementation on muscle strength. Nine did not.
  • When the data from all 16 studies were combined, there was only a slight beneficial effect of vitamin D supplementation on muscle strength.

However, it was in the discussion that the reason for these discrepancies became apparent. There were three major deficiencies in study design that were responsible for the discrepancies.

1) There was a huge difference in study design.

  • The subjects were of different ages, genders, and ethnicity.
  • The dose of vitamin D supplementation varied.
  • Different measures of muscle strength and performance were used.

Until the scientific and medical community agree on a standardized study design it will be difficult to obtain consistent results.Garbage In Garbage Out

While this deficiency explains the variation in outcomes from study to study, there are two other deficiencies in study design that explain why many of the studies failed to find an effect of vitamin D on muscle strength. I call this “Garbage In, Garbage Out”. Simply put, if the study has design flaws, it may be incapable of detecting a positive effect of vitamin D on muscle strength.

2) Many of the studies did not measure vitamin D status of the participants at the beginning of the study.

  • The results of the study described above show that additional vitamin D will be of little benefit for anyone who starts the study with an adequate vitamin D status.
  • In the study above 46% of the participants had adequate vitamin D status. This is typical for the elderly community. When almost 50% of the participants in a study have adequate vitamin D status at the beginning of a study it becomes almost impossible to demonstrate a beneficial effect of vitamin D supplementation on any outcome.

It is essential that future studies of vitamin D supplementation focus on participants who have low vitamin D status. Otherwise, you are almost guaranteeing a negative outcome.

3) Most of the studies ignored the fact that vitamin D status is only one of three factors that are essential for muscle strength.

  • In the case of muscle strength, especially in the elderly, the three essentials are vitamin D, protein, and exercise. All three are needed to maintain or increase muscle strength. Simply put, if one is missing, the other two will have little or no effect on muscle strength. Unfortunately, you cannot assume that exercise and protein intake are adequate in older Americans:
  • Many older adults don’t get enough exercise because of physical limitations.

Unfortunately, many clinical studies on the effect of vitamin D supplementation and muscle strength fail to include exercise and adequate protein intake in the study. Such clinical trials are doomed to failure.

Now you know why vitamin D research is so controversial. Until the scientific and medical community get their act together and perform better designed experiments, vitamin D research will continue to be controversial and confusing.

What Does This Mean For You?

Old Man Lifting WeightsLoss of muscle mass as we age is not a trivial matter. As described above, it:

  • Leads to loss of mobility.
  • Increases your risk of falling. This often leads to serious fractures which increase your risk of disability and death.
  • Lowers your metabolic rate, which increases your risk of obesity and obesity-related diseases.

So, what can you do prevent loss of muscle mass as you age? The answer is simple:

  • Aim for 25-30 grams of high-quality protein in each meal.
    • That protein can come from meat, fish, eggs, or vegetable sources such as beans, nuts, and seeds.
    • That doesn’t mean you need to consume an 8-ounce steak or a half chicken. 3-4 ounces is plenty.
    • However, it does mean you can’t subsist on green salads and leafy greens alone. They are healthy, but you need to include a good protein source if you are going to meet your protein needs.
  • Aim for 150 minutes of moderate intensity exercise per week.
    • At least half of that exercise should be resistance exercise (lifting weights, for example).
    • If you have physical limitations, consult your doctor and work with a physical therapist or personal trainer to design resistance exercises you can do.
    • Aim for a variety of resistance exercises. You will only strengthen the muscles you exercise.
  • Aim for an adequate vitamin D status.
    • Start with a multivitamin containing at least 800 IU of vitamin D3.
    • Because there is large variation in the efficiency with which we convert vitamin D to 25-hydroxy vitamin D, you should get your serum 25-hydroxyvitamin D tested on a yearly basis. Your health professional can tell you if you need to take larger amounts of vitamin D3.
    • This study suggests that a serum 25-hydroxy vitamin D level of 55-69 nmol/L is optimal, and higher levels provide no additional benefit. That means there is no need to take mega-doses of vitamin D3 unless directed by your health professional.

The Bottom Line 

A recent study looked at the effect of vitamin D status on muscle strength and performance in a healthy population with an average age of 69.

When they looked at handgrip strength:

  • Only 22% of the participants with an adequate vitamin D status had low handgrip strength.
  • 40% of participants who were vitamin D deficient had low handgrip strength. That’s almost a 2-fold difference.
  • Handgrip strength increased linearly with vitamin D status.

When they looked at muscle performance:

  • Only 8% of the participants with an adequate vitamin D status scored low on this test.
  • 25% of participants who were vitamin D deficient scored low on this test. That’s a 3-fold difference.
  • Muscle performance also increased linearly with vitamin D status.

The authors concluded: “Vitamin D deficiency was associated with impaired muscle strength and performance in a large study of community-dwelling older people. It is generally accepted that vitamin D deficiency should be reversed to prevent bone disease. This strategy may also protect skeletal muscle function in aging.”

If we look at the research more broadly, there are three factors that are essential for maintaining muscle mass as we age: exercise, protein, and vitamin D. Therefore, my recommendations are to:

1)  Aim for 25-30 grams of high-quality protein in each meal.

2) Aim for 150 minutes of moderate intensity exercise per week. At least half of that exercise should be resistance exercise.

3) Aim for an adequate vitamin D status (>50 nmol/L of serum 25-hydroxy vitamin D). A good place to start is with a multivitamin providing at least 800 IU of vitamin D3.

For more details on my recommendations and a discussion of why studies on vitamin D supplementation are often confusing, read the article above.

These statements have not been evaluated by the Food and Drug Administration. This information is not intended to diagnose, treat, cure or prevent any disease

 

Can Vegans Have Strong Bones?

When Is Supplementation Important? 

Author: Dr. Stephen Chaney

Healthy BoneWhole food, vegan diets are incredibly healthy.

  • They have a low caloric density, which can help you maintain a healthy weight.
  • They are anti-inflammatory, which can help prevent all the “itis” diseases.
  • They are associated with reduced risk of diabetes, heart disease, and some cancers.
  • Plus a recent study has shown that vegans age 60 and older require 58% fewer medications than people consuming non-vegetarian diets.

But vegan diets are incomplete, and as I have said previously, “We have 5 food groups for a reason”. Vegan diets tend to be low in several important nutrients, but for the purposes of this article I will focus on calcium and vitamin D. Vitamin D is a particular problem for vegans because mushrooms are the only plant food that naturally contain vitamin D, and the vitamin D found in mushrooms is in the less potent D2 form.

Calcium and vitamin D are essential for strong bones, so it is not surprising that vegans tend to have less dense bones than non-vegans. But are these differences significant? Are vegans more likely to have broken bones than non-vegans?

That is the question the current study (DL Thorpe et al, American Journal of Clinical Nutrition, 114: 488-495, 2021) was designed to answer. The study also asked whether supplementation with calcium and vitamin D was sufficient to reduce the risk of bone fracture in vegans.

How Was This Study Done?

Clinical StudyThe data for this study were obtained from the Adventist Health Study-2. This is a study of ~96,000 members of the Seventh-day Adventist Church in North America who were recruited into the study between 2002 and 2007 and followed for up to 15 years.

Seventh-day Adventists are a good group for this kind of study because the Adventist church advocates a vegan diet consisting of legumes, whole grains, nuts, fruits, and vegetables. However, it allows personal choice, so a significant number of Adventists choose modifications of the vegan diet and 42% of them eat a nonvegetarian diet.

This diversity allows studies of the Adventist population to not only compare a vegan diet to a nonvegetarian diet, but also to compare it with the various forms of vegetarian diets.

This study was designed to determine whether vegans had a higher risk of hip fractures than non-vegan Adventists. It was performed with a sub-population of the original study group who were over 45 years old at the time of enrollment and who were white, non-Hispanic. The decision to focus on the white non-Hispanic group was made because this is the group with the highest risk of hip fractures after age 45.

At enrollment into the study all participants completed a comprehensive lifestyle questionnaire which included a detail food frequency questionnaire. Based on the food frequency questionnaire participants were divided into 5 dietary patterns.

  • Vegans (consume only a plant-based diet).
  • Lacto-ovo-vegetarian (include dairy and eggs in their diet).
  • Pesco-vegetarians (include fish as well as dairy and eggs in their diet).
  • Semi-vegetarians (include fish and some non-fish meat (primarily poultry) as well as dairy and eggs in their diet).
  • Non-vegetarians (include all meats, dairy, and eggs in their diet). Their diet included 58% plant protein, which is much higher than the typical American diet, but much less than the 96% plant protein consumed by vegans.

Every two years the participants were mailed follow-up questionnaires that included the question, “Have you had any fractures (broken bones) of the wrist or hip after 2001? Include only those that came from a fall or minor accident.”

Can Vegans Have Strong Bones?

Unhealthy BoneThe results of this study were striking.

  • When men and women were considered together there was an increasing risk of hip fracture with increasing plant-based diet patterns. But the differences were not statistically significant.
  • However, the effect of diet pattern on the risk of hip fractures was strongly influenced by gender.
    • For men there was no association between diet pattern and risk of hip fractures.
    • For women there was an increased risk of hip fractures across the diet continuum from nonvegetarians to vegans, with vegan women having a 55% higher risk of hip fracture than nonvegetarian women.
  • The increased risk of hip fractures in vegan women did not appear to be due to other lifestyle differences between vegan women and nonvegetarian women. For example:
    • Vegan women were almost twice as likely to walk more than 5 miles/week than nonvegetarian women.
    • Vegan women consumed more vitamin C and magnesium, which are also important for strong bones, than nonvegetarian women.
    • Vegan women got the same amount of daily sun exposure as nonvegetarian women.
  • The effect of diet pattern on the risk of hip fractures was also strongly influenced by supplementation with Calcium Supplementcalcium and vitamin D.
    • Vegan women who did not supplement with calcium and vitamin D had a 3-fold higher risk of hip fracture than nonvegetarian women who did not supplement.
    • Vegan women who supplemented with calcium and vitamin D (660 mg/day of calcium and 13.5 mcg/day of vitamin D on average) had no increased risk of hip fracture compared to nonvegetarian women who supplemented with calcium and vitamin D.
  • In interpreting this study there are a few things we should note.
    • The authors attributed the lack of an effect of a vegan diet on hip fracture risk in men to anatomical and hormonal differences that result in higher bone density for males.
    • In addition, because the average age of onset of osteoporosis is 15 years later for men than for women, this study may not have been adequately designed to measure the effect of a vegan diet on hip fracture in men. Ideally, the study should have enrolled participants who were at least 60 or older if it wished to detect an effect of diet on hip fractures in men.
    • Finally, because the study enrolled only white, non-Hispanic women into the study, it does not tell us the effect of a vegan diet on women of other ethnicities. Once again, if there is an effect, it would likely occur at an older age than for white, non-Hispanic women.

The authors concluded, “Without combined supplementation of both vitamin D and calcium, female vegans are at high risk of hip fracture. However, with supplementation the excessive risk associated with vegans disappeared.”

Simply put, vegan diets are very healthy. They reduce the risk of heart disease, high blood pressure, diabetes, some cancers, and inflammatory diseases.

However, the bad news is:

  • Vegan women have a lower intake of both calcium and vitamin D than nonvegetarian women.
  • Vegan women have lower bone density than nonvegetarian women.
  • Vegan women have a higher risk of hip fracture than nonvegetarian women.

The good news is:

  • Supplement with calcium and vitamin D eliminates the increased risk of hip fracture for vegan women compared to nonvegetarian women.

When Is Supplementation Important?

Supplementation PerspectiveMuch of the controversy about supplementation comes from a “one size fits all” mentality. Supplement proponents are constantly proclaiming that everyone needs nutrient “X”. And scientists are constantly proving that everyone doesn’t need nutrient “X”. No wonder you are confused.

I believe in a more holistic approach for determining whether certain supplements are right for you. Dietary insufficiencies, increased need, genetic predisposition, and diseases all affect your need for supplementation, as illustrated in the diagram on your left. I have discussed this approach in more detail in a previous issue (https://www.chaneyhealth.com/healthtips/do-you-need-supplements/) of “Health Tips From the Professor”.

But today I will just focus on dietary insufficiencies.

  • Most Americans consume too much highly processed fast and convenience foods. According to the USDA, we are often getting inadequate amounts of calcium, magnesium, and vitamins A, D, E and C. Iron is also considered a nutrient of concern for young children and pregnant women.
  • According to a recent study, regular use of a multivitamin is sufficient to eliminate most these deficiencies except for calcium, magnesium, and vitamin D. A well-designed calcium, magnesium and vitamin D supplement may be needed to eliminate those deficiencies.
  • In addition, intake of omega-3 fatty acids from foods appears to be inadequate in this country. Recent studies have found that American’s blood levels of omega-3s are among the lowest in the world and only half of the recommended level for reducing the risk of heart disease. Therefore, omega-3 supplementation is often a good idea.

Ironically, “healthy” diets are not much better when it comes to dietary insufficiencies. That is because many of these diets eliminate one or more food groups. And, as I have said previously, we have 5 food groups for a reason.

Take the vegan diet, for example:

  • There is excellent evidence that whole food, vegan diets reduce the risk of heart disease, diabetes, inflammatory diseases, and some cancers. It qualifies as an incredibly healthy diet.
  • However, vegan diets exclude dairy and meats. They are often low in protein, vitamin B12, vitamin D, calcium, iron, zinc, and long chain omega-3 fatty acids. Supplementation with these nutrients is a good idea for people following a vegan diet.
  • The study described above goes one step further. It shows that supplementation with calcium and vitamin D may be essential for reducing the risk of hip fractures in vegan women.

There are other popular diets like Paleo and keto which claim to be healthy even though there are no long-term studies to back up that claim.

  • However, those diets are also incomplete. They exclude fruits, some vegetables, grains, and most plant protein sources.
  • A recent study reported that the Paleo diet increased the risk of calcium, magnesium, iodine, thiamin, riboflavin, folate, and vitamin D deficiency. The keto diet is even more restrictive and is likely to create additional deficiencies.
  • And it is not just nutrient deficiencies that are of concern when you eliminate plant food groups. Plants also provide a variety of phytonutrients that are important for optimal health and fiber that supports the growth of beneficial gut bacteria.

In short, the typical American diet has nutrient insufficiencies. “Healthy” diets that eliminate food groups also create nutrient insufficiencies. Supplementation can fill those gaps.

The Bottom Line

Vegan diets are incredibly healthy, but:

  • They eliminate two food groups – dairy, and meat protein.
  • They have lower calcium and vitamin D intake than nonvegetarians.
  • They also have lower bone density than nonvegetarians.

The study described in this article was designed to determine whether vegans also had a higher risk of bone fractures. It found:

  • Vegan women who don’t supplement have a 3-fold higher risk of hip fracture than nonvegetarian women.
  • The increased risk of hip fractures in vegan women did not appear to be due to other lifestyle differences between vegan women and nonvegetarian women.
  • Supplementation with calcium and vitamin D (660 mg/day of calcium and 13.5 mcg/day of vitamin D on average) eliminated the difference in risk of hip fracture between vegan women and nonvegetarian women.

In the article above I discuss the importance of supplementation in assuring diets are nutritionally complete.

  • In short, the typical American diet has nutrient insufficiencies. “Healthy” diets that eliminate food groups also create nutrient insufficiencies. Supplementation can fill those gaps.

For more details about the study and a discussion of which supplements may be needed to assure nutritionally adequate diets, read the article above.

These statements have not been evaluated by the Food and Drug Administration. This information is not intended to diagnose, treat, cure, or prevent any disease.

Are We Killing Our Children With Kindness?

The Danger Of Ultraprocessed Foods 

Author: Dr. Stephen Chaney

fast foodIt breaks my heart when I see a mom and her children in the checkout line of a supermarket with a cart filled with sodas, sweets, and convenience foods and devoid of fresh fruits and vegetables – or when I see fast food restaurants packed with parents and their children.

I get it. Our kids love these foods. It seems like an act of kindness to give them the foods they crave. But are we killing our children with kindness?

Let me explain. The human brain is hardwired to crave sweets, salt, and fat. In prehistoric times each of these cravings had a survival benefit. For example:

  • Mother’s milk is naturally sweet. It only makes sense that babies should crave the nutrition source that is essential for their early growth and development.
  • Fruits provide a cornucopia of vitamins, minerals, and phytonutrients. But fruits were scarce and seasonal in prehistoric times. Their sweetness provided an incentive for early man to seek them out.
  • Some salt is essential for life. Yet in early history it was scare. It was worth its weight in gold.
  • In prehistoric times it was feast or famine. The human body has an unlimited capacity to store fat in times of plenty, and those fat stores carried early man through times of famine.

Today most Americans live in a time of food abundance. There are fast food restaurants on almost every street corner and in every shopping mall. We think of famine as the days we skipped lunch because we were busy.

Yet these cravings remain, and the food industry has weaponized them. They are churning out an endless supply highly processed foods and beverages. These foods are not being designed to improve their nutritional value. They are designed to satisfy our cravings and lure us and our children into consuming more of them every year.

Scientists have developed a classification system that assigns foods in the American diet to different groups based on the degree of processing of that food. As you might expect, the best classification is unprocessed foods. The worst classification is called “ultraprocessed foods”. [I will describe this classification system in more detail in the next section.]

It is time we asked how much ultraprocessed foods our children are eating and what it is doing to their health. That is the topic of the study (L Wang et al, JAMA, 326: 519-530, 2021) I will discuss today.

How Was This Study Done?

Clinical StudyThe data for this study were obtained from NHANES (National Health and Nutrition Examination Survey) dietary data collected from 33,795 American children (ages 2-19, average age = 10) between 1999 and 2018.

NHANES is a program conducted by the CDC to survey the health and nutritional status of adults and children in the United States. The survey has been conducted on a continuous, yearly basis since 1999.

The dietary data are collected via 24-hour dietary recalls conducted by trained interviewers, with a second recall administered over the phone 3-10 days later to improve the accuracy of the data.

  • Children aged 12-19 completed the dietary survey on their own.
  • For children aged 6-11, a parent or guardian assisted them in filling out the survey.
  • For children aged 2-5, a parent or guardian filled out the survey for them.

The foods and beverages consumed by the children were divided into 4 major groups based on the extent of processing using a well-established classification system called NOVA. The 4 groups are:

1) Unprocessed Or Minimally Processed Foods.

  • This includes whole foods and foods that are minimally processed without the addition of oils, fats, sugar, salt, or other ingredients to the food.
  • Examples of minimally processed foods include things like oatmeal, nut butters, dried fruit, frozen fruits or vegetables, and dried beans.

2) Processed Culinary Ingredients.

  • This includes recipes from restaurants or in-home cooking that add small amounts of oils, fats, sugar, salt, and seasonings to whole foods.

3) Processed Foods

  • This includes foods made in factories by the addition of salt, sugar, oil, or other substances added to whole or minimally processed foods.
  • Examples include tomato paste, canned fruits packed in sugar syrup, cheese, smoked or cured meat.

4) Ultraprocessed Foods

  • These are industrial formulations created in factories mostly or entirely from substances extracted from foods (oils, fats, sugar, starch, and proteins), derived from food constituents (hydrogenated fats and modified starch), or synthesized in laboratories (flavor enhancers, colors, and food additives).
  • Examples include sugar sweetened beverages; sweet or savory packaged snacks; chocolates and candies; burgers, hot dogs, and sausages; poultry and fish nuggets, pastries, cakes, and cake mixes.

Are We Killing Our Children With Kindness?

Obese ChildAs I said above, the important question is, “Are we killing our children with kindness when we give them the sugary drinks, sweets, convenience foods, and fast foods they crave?” After all, the foods we give them when they are young are the ones they are most likely to select when they get older.

Let’s start by looking at how pervasive these foods have become. That was the purpose of the study I am discussing today, and the results of this study are alarming. When they looked at the changes in food consumption by our children between 1999 and 2018:

  • The percentage of calories from ultraprocessed foods increased from 61.4% to 67%. That means:
    • Today, more than 2/3 of the calories our children consume daily come from ultraprocessed foods!
  • The percentage of calories from unprocessed and minimally processed foods decreased from 28.8% to 23.5%. That means:
    • In the span of just 19 years the diets of our children have gone from bad to worse!
  • Ultraprocessed foods were more likely to be consumed away from home and at fast food restaurants.

When the investigators looked at individual categories of ultraprocessed foods:

  • The percentage of calories coming from ready to heat and eat dishes like frozen pizzas and other frozen meals or snacks increased from 2.2% to 11.2%.
  • The percentage of calories coming from sweet snacks and desserts increased from 10.7% to 12.9%.
  • The percentage of calories coming from sugar sweetened beverages decreased from 10.8% to 5.3%.
    • This is potentially the only good news from this study.

The authors concluded. “Based on NHANES data from 1999 to 2018, the estimated energy intake from consumption of ultraprocessed foods has increased among youths in the US and has consistently comprised the majority of their total energy intake.”

“These results suggest that food processing may need to be considered as a food dimension in addition to nutrients and food groups in future dietary recommendations and food policies.”

The Danger Of Ultraprocessed Foods

Fast Food DangersThis study clearly shows that ultraprocessed foods have become the mainstay of our children’s diets. Forget a balanced diet! Forget “Eat your fruits and vegetables”! Our children’s diets have been fundamentally transformed by “Big Food, Inc”.

You might be saying to yourself, “So, they are eating their favorite processed foods. What’s the big deal? How bad can it be?” My answer is, “Pretty Bad”. I chose the title, “Are we killing our children with kindness”, for a reason.

When you look at what happens to children who eat a diet that is mostly ultraprocessed foods:

#1: Their nutrition suffers. When the investigators divided the children into 5 groups based on the percentage of calories coming from ultraprocessed foods, the children consuming the most ultraprocessed food had:

  • Significantly higher intakes of carbohydrates (mostly refined carbohydrates); total fats; polyunsaturated fats (mostly highly processed omega-6-rich vegetable oils); and added sugars.
  • Significantly lower intakes of fiber; protein; omega-3 polyunsaturated fatty acids; calcium; magnesium; potassium; zinc; vitamins A, C, D, and folate.
    • The low intake of fiber means our children will be less likely to have health-promoting friendly bacteria and more likely to have disease-promoting bad bacteria in their guts.
    • The low intake of calcium, magnesium, and vitamin D means they will be less likely to achieve maximum bone density as young adults and will be more likely to suffer from osteoporosis as they age.

#2: They are more likely to become obese. Remember, these are foods that are made in a factory, not grown on a farm.

  • They are high in fat, sugar, and refined carbohydrates. That means they have a high caloric density. Each bite has 2-3 times the calories found in a bite of fresh fruits and vegetables.
  • As I said earlier, the food industry has weaponized our natural cravings for sweet, salty, and fatty foods. They feed their prototypes to a series of consumer tasting panels until they find the perfect blend of sugar, salt, and fat to create maximum craving.
  • And if that weren’t enough, they add additives to create the perfect flavor and “mouth appeal”.
    • It is no wonder that clinical studies have found a strong correlation between high intake of ultraprocessed food and obesity in both children and adults.
    • It is also no wonder that the rate of childhood obesity has almost quadrupled (5% to 18.5%) in the last 40 years.

#3: They are more likely to become sick as adults and die prematurely.

  • Obesity; high intake of fat, sugar, and refined carbohydrates; and low intake of fiber, omega-3s, and essential nutrients all contribute to an increased risk of diabetes, heart disease, and some cancers.
    • It is no wonder that clinical studies have found a strong correlation between high intake of ultraprocessed food and increased risk of diabetes, heart disease, some cancers, and premature death in adults.
    • It is also no wonder a recent study found that type 2 diabetes in children has almost doubled between 2001 and 2017.

The data are clear. When we allow our children to subsist on a diet mostly made up of the ultraprocessed foods they crave, we may be giving them, not love, but a lifetime of obesity and declining health instead. And yes, we may be killing them with kindness.

Instead, my recommendations are:

  • expose your children to a variety of fresh fruits, vegetables, and minimally processed foods at an early age.
  • They will reject some of them, and that’s OK. Introduce others until you find whole, minimally processed foods they like. Reintroduce them to some of the foods they initially rejected as they get older.
  • Don’t keep tempting ultraprocessed foods in your house.
  • You may just succeed in putting your children on the path to a healthier diet and a healthier, longer life.

The Bottom Line

It breaks my heart when I see a mom and her children in the checkout line of a supermarket with a cart filled with sodas, sweets, and convenience foods and devoid of fresh fruits and vegetables – or when I see fast food restaurants packed with parents and their children.

I get it. Our kids love these foods. It seems like an act of kindness to give them the foods they crave. But are we killing our children with kindness?

It is time we asked how much ultraprocessed foods our children are eating and what it is doing to their health. A recent study did just that. When they looked at the changes in food consumption by our children between 1999 and 2018:

  • The percentage of calories from ultraprocessed foods increased from 61.4% to 67%. That means:
    • Today, more than 2/3 of the calories our children consume daily come from ultraprocessed foods!
  • The percentage of calories from unprocessed and minimally processed foods decreased from 28.8% to 23.5%. That means:
    • In the span of just 19 years the diets of our children have gone from bad to worse!

This study clearly shows that ultraprocessed foods have become the mainstay of our children’s diets. Forget a balanced diet! Forget “Eat your fruits and vegetables”! Our children’s diets have been fundamentally transformed by “Big Food, Inc”.

You might be saying to yourself, “So, they are eating their favorite processed foods. What’s the big deal? How bad can it be?” My answer is, “Pretty Bad”. I chose the title, “Are we killing our children with kindness”, for a reason.

When you look at what happens to children who eat a diet that is mostly ultraprocessed foods:

  • Their nutrition suffers.
  • They are more likely to become obese.
  • They are more likely to become sick as adults and die prematurely.

For more details about this study, read the article above.

These statements have not been evaluated by the Food and Drug Administration. This information is not intended to diagnose, treat, cure, or prevent any disease.

Health Tips From The Professor