Is The Mediterranean Diet Healthy For Women?

What Does This Study Mean For You? 

Author: Dr. Stephen Chaney 

There is a well-known health disparity in clinical studies related to health. For years most of the studies have been done by men for men. Women have been assumed to experience the same benefits and risks from diet choices as men. But that hasn’t always proven to be true.

The Mediterranean diet is no exception. For example, it has garnered a reputation of reducing heart disease risk for both men and women.

However, most studies on the Mediterranean diet have included primarily male participants or did not report sex specific differences in outcomes.

And the few studies that reported sex specific outcomes have been inconsistent.

  • Some studies have found that men and women benefitted equally from the Mediterranean diet.
  • Other studies have reported that men benefitted more than women.

However, these were all small studies. No meta-analyses have been reported that focused on the heart benefits of the Mediterranean diet for women.

The study (A Pant et al., Heart; 109: 1208-1215, 2023) I will describe today was designed to fill that gap.

How Was The Study Done?

clinical studyThe investigators started by screening the literature to find studies that:

  • Measured adherence to the Mediterranean diet using the original MDS (Mediterranean Diet Score) or more recent modifications of the MDS.
  • Included women ≥18 years without previous diagnosis of clinical or subclinical heart disease.
  • Performed the study with only women participants or organized their data so that the data pertaining to women could be extracted from the study.

The investigators then performed a meta-analysis on data from 722,495 women in 16 studies published between 2006 and 2021 that met these criteria. These studies followed the women for an average of 12.5 years. The studies were primarily conducted in the United States and Europe.

The individual studies divided participants into either quintiles or quartiles and compared participants with the highest adherence to the Mediterranean diet to those with the lowest adherence.

  • The primary outcomes measured were total mortality and the incidence of CVD, cardiovascular disease (defined as including CHD (coronary heart disease), myocardial infarction (heart attack), stroke, heart failure, and cardiovascular death).
  • The secondary outcomes measured were stroke and CHD, coronary heart disease (heart disease caused by atherosclerotic plaque build up in the coronary arteries).

Is The Mediterranean Diet Healthy For Women?

Mediterranean Diet FoodsWhen comparing the highest to the lowest adherence to the Mediterranean diet:

  • The incidence of CVD (cardiovascular disease) was reduced by 24%.
  • Total mortality during the ~12.5-year follow-up was reduced by 23%.
  • The incidence of CHD (coronary heart disease) was reduced by 25%.
  • The risk of stroke was reduced by 13%, but that risk reduction was not statistically significant.
    • The risk reduction for both CVD and total mortality was similar to that previously reported for men.
    • Risk reduction for CVD was slightly higher for women of European descent (24%) than for women of non-European descent (21%). The later category included women of Asian, Native-Hawaiian, and African – American descent.

The authors concluded, “This study supports a beneficial effect of the Mediterranean diet on the primary prevention of CVD and death in women and is an important step in enabling sex-specific guidelines.”

I would add that the data from women of non-European decent suggests that genetic background and/or ethnicity may influence the effectiveness of the Mediterranean diet at reducing heart disease risk, but this effect appears to be small.

What Does This Mean For You?

The results of this study are not unexpected. But that doesn’t mean that studies with women are not valuable. There have been several examples in recent years where health or medical advice based on studies with men needed to be modified for females once the studies were repeated with women.

Before covering what this study means for you, I should point out that while women often fear breast cancer most, heart disease is their number one killer, as the graph on the left shows. In fact, a woman’s risk of dying from coronary heart disease is 6 times greater than her risk of dying from breast cancer.

This study shows that following a Mediterranean–style diet lowers their risk of developing and dying from heart disease. But the Mediterranean diet is not alone in providing these health benefits. It is simply a whole food, primarily plant-based diet that reflects the food preferences of the Mediterranean region.

The DASH diet, which reflects the food preferences of Americans, and the Nordic diet, which reflects the food preferences of the Scandinavian countries, are equally heart healthy. In fact, any whole food, primarily plant-based diet will reduce the risk of heart disease. You should choose the one that best fits your food preferences and lifestyle.

Of course, diet is just part of a holistic approach for reducing heart disease risk. Other important risk reduction strategies include:

  • Don’t smoke.
  • Exercise and maintain a healthy weight.
  • Manage stress.
  • Avoid or limit alcohol.
  • Know your numbers (cholesterol, triglycerides, and blood pressure, for example).
  • Manage other health conditions that increase the risk of heart disease (high blood pressure, diabetes, and high cholesterol, for example).

The Bottom Line

Most studies on the heart health benefits of the Mediterranean diet have been done with men or have not analyzed the data from men and women separately. A recent meta-analysis combining data from 16 studies with 722,495 women showed that the Mediterranean diet was just as heart healthy for women as it was for men.

The authors concluded, “This study supports a beneficial effect of the Mediterranean diet on the primary prevention of CVD and death in women and is an important step in enabling sex-specific guidelines.”

For more details on this study and information on other diets that are heart healthy, read the article above.

These statements have not been evaluated by the Food and Drug Administration. This information is not intended to diagnose, treat, cure or prevent any disease.

_____________________________________________________________________________My My posts and “Health Tips From the Professor” articles carefully avoid claims about any brand of supplement or manufacturer of supplements. However, I am often asked by representatives of supplement companies if they can share them with their customers.

My answer is, “Yes, as long as you share only the article without any additions or alterations. In particular, you should avoid adding any mention of your company or your company’s products. If you were to do that, you could be making what the FTC and FDA consider a “misleading health claim” that could result in legal action against you and the company you represent.

For more detail about FTC regulations for health claims, see this link.

https://www.ftc.gov/business-guidance/resources/health-products-compliance-guidance

 _____________________________________________________________________

About The Author 

Dr. Chaney has a BS in Chemistry from Duke University and a PhD in Biochemistry from UCLA. He is Professor Emeritus from the University of North Carolina where he taught biochemistry and nutrition to medical and dental students for 40 years.

Dr. Chaney won numerous teaching awards at UNC, including the Academy of Educators “Excellence in Teaching Lifetime Achievement Award”.

Dr Chaney also ran an active cancer research program at UNC and published over 100 scientific articles and reviews in peer-reviewed scientific journals. In addition, he authored two chapters on nutrition in one of the leading biochemistry text books for medical students.

Since retiring from the University of North Carolina, he has been writing a weekly health blog called “Health Tips From the Professor”. He has also written two best-selling books, “Slaying the Food Myths” and “Slaying the Supplement Myths”. And most recently he has created an online lifestyle change course, “Create Your Personal Health Zone”. For more information visit https://chaneyhealth.com.

For the past 45 years Dr. Chaney and his wife Suzanne have been helping people improve their health holistically through a combination of good diet, exercise, weight control and appropriate supplementation.

Which Nutrients Prevent Prenatal Depression?

What Does This Study Mean For You?

Author: Dr. Stephen Chaney 

Yes, you read the headline correctly. Everyone talks about postnatal depression. But prenatal depression is also a “thing”, especially during the third trimester.

  • Worldwide, 4-20% of women experience some degree of depression during the third trimester – with pregnant women in high-income countries at the lower end (4-10%) of depression risk.
  • In contrast, the incidence of postnatal depression is 10-15%.

It is probably no coincidence that the incidence of depression is greatest during the third trimester and during the postnatal period.

  • The third trimester is the most difficult part of pregnancy for many women.
  • When a woman brings her baby home from the hospital her orderly life becomes chaotic.

But what role does nutrition play?

  • While not definitive, many studies suggest that supplementation with B vitamins, especially folic acid, B6, and B12; omega-3 fatty acids; vitamin D; and iron reduce the risk of postnatal depression.
  • However, there is much less information on which nutrients reduce the risk of prenatal depression.

Based on studies suggesting both iron and vitamin D deficiencies may negatively impact mental health, the authors of this study (JL Evanchuk et al, The Journal Of Nutrition. 154, 174-184, 2024) set out to determine whether iron and/or vitamin D deficiencies increase the risk of prenatal depression during the first trimester.

How Was This Study Done?

Clinical StudyThe authors recruited 2189 newly pregnant mothers from Calgary and Edmonton in Ontario Canada between 2009 and 2012. Participants in the study visited clinics in the area upon entry into the study; midway through the first, second, and third trimesters; and at multiple timepoints up to 3 months during the postpartum period.

In addition to the usual pregnancy wellness tests, participants filled out a 24-hour dietary recall and a Supplemental Intake Questionnaire to determine intakes of iron and vitamin D.

Note: The participants were all advised to take some form of prenatal supplement during the study. That’s because prenatal supplements are considered “the standard of care” for pregnant woman, so it would be considered unethical not to include a prenatal supplement in this study.

At the mid-point of the second trimester blood samples were drawn and analyzed for biomarkers of iron and vitamin D insufficiency. For iron the biomarkers were serum ferritin, soluble transferrin receptor, and hepcidin. For vitamin D, the biomarkers were 25-hydroxyvitamin D, 1,25-dihydroxyvitamin D, and 3-epi-25-hydroxyvitamin D.

Iron deficiency was defined as serum ferritin levels <15 µg/L. Vitamin D insufficiency was defined as 25-hydroxyvitamin D levels < 75nmol/L. The other biomarkers were used to confirm these diagnoses.

Maternal depression was measured midway through the third trimester and ~3 months postpartum using 10-item questionnaire called the Edinburg Postnatal Depression Scale (EPDS). The EPDS ranks depression on a scale of 0 to 30, with a score of ≥13 considered an indication of likely depression.

The characteristics of the women enrolled in this study were:

  • Average age = 31.5
  • Average prepregnancy BMI = 23 (healthy weight).
  • Married or cohabitating with a partner = 97%.
  • Highly educated (college or postgraduate degree) = 68%.
  • Income above $70,000/year = 78%.
  • First child = 54%.
  • White = 80%.

Based on the Edinburg Depression Scale, probably depression for the 1822 women who completed the study was 5.6% during the third trimester and 4.4% 3 months postpartum.

Note: The low incidence of depression seen in this study was probably due to:

  • The women in this study were of high socioeconomic status and were receiving excellent healthcare.
  • The women in this study were taking prenatal supplements that provided both iron and vitamin D.

Which Nutrients Prevent Prenatal Depression? 

pregnant women taking vitaminsAs I mentioned when describing how the study was designed, all participants in this study were advised to take a prenatal supplement. Consequently:

  • 94% of the women in this study were taking a supplement containing iron with an average supplemental iron intake of 26 mg/day.
    • Note: The RDA for iron during pregnancy is 30 mg/day and most prenatal supplements provide 27 mg/day.
  • 68% of the women in this study were taking a supplement containing vitamin D, with an average supplemental vitamin D intake of 330 IU/day.
    • Note: The RDA for vitamin D during pregnancy is 600 IU/day, but most prenatal supplements provide far less than that.

When the investigators looked at iron and vitamin D status during the second trimester:

  • 63.3% of the women had adequate levels of both iron and vitamin D.
  • 14.8% of the women were low in vitamin D but had adequate iron levels.
  • 18.4% of the women were low in iron but had adequate levels of vitamin D.
  • 3.5% of the women were low in both iron and vitamin D.

RDAs are supposed to be enough to meet the nutrient requirements of 97-98% of healthy individuals, so it is perhaps surprising to see so many women with insufficient levels of iron (21.9%) and/or vitamin D (18.3%) in this study. This could be due to:

  • Insufficient intake.
    • This is a likely explanation for vitamin D because the supplements women were using in this study provided around half the recommended RDA for vitamin D and the women lived at a northern latitude where sun exposure makes a small contribution to vitamin D levels.
    • However, this is a less likely explanation for insufficient iron levels because the supplements provided 87% of the RDA for iron.
  • Inadequate RDAs. Studies like this one provide a rigorous test for the adequacy of existing RDAs. This study suggests the existing RDA for iron is adequate to meet the needs of ~80% of pregnant women, which is reassuring. However, it may need to be increased to reach the goal of meeting the iron requirements for 97-98% of pregnant women.

But the important question is whether the iron and vitamin D insufficiencies seen in this study mattered. The data suggested that they did.

  • For pregnant women with low iron, but adequate vitamin D levels in the second trimester, there was a small, but significant, increased risk of experiencing depression symptoms in the third trimester.
  • For pregnant women with low iron and vitamin D levels in the second trimester, the risk of experiencing depression symptoms in the third trimester increased by 2.2 points in the 30-point Edinburg Depression Scale.
    • This is equivalent to a 7.4% increased risk of depression from deficiencies of iron and vitamin D alone – and these are only 2 of at least 8 nutrients thought to be associated with maternal depression.

The authors concluded, “Maternal iron and vitamin D biomarkers, measured during midpregnancy, were independently associated with third trimester maternal depression symptoms…This investigation is one of the first to report on the combined adequacy of maternal iron and vitamin D status during pregnancy and its impact on maternal depression.

The novelty of this work reinforces the need to ask similar questions [with other nutrients and] in other pregnant populations. Future investigations should report on the status of multiple nutrients and explore their independent and combined impact on health outcomes of pregnant individuals and their children.”

What Does This Study Mean For You?

Questioning WomanDepression during pregnancy is bad for you. And because your fetus can sense your mood, it is bad for your baby. So, what should you do?

You can consult with your doctor about which antidepressants are safe to take during pregnancy. But the truth is there are no good choices. There are some antidepressants that are off limits. There are other antidepressants that appear to have little short-term risks, but we have no idea if there are long-term risks for your child.

So, what about natural approaches? Let’s start with nutrition.

The biggest takeaway from this study is that prenatal supplements may not be sufficient to prevent nutritional deficiencies that may cause prenatal depression for pregnant women.

  • This does not mean that every pregnant woman suffering prenatal depression should increase their iron and vitamin D levels.
  • However, if you are experiencing prenatal depression, you might want to ask your doctor about checking your iron and vitamin D status to determine if extra iron and/or vitamin D would be beneficial.

And to put this study into its proper perspective we need to remember that iron and vitamin D deficiencies are only two of many nutrients that may increase the risk of prenatal depression.

For example, in addition to iron and vitamin D, prenatal depression is associated with deficiencies of:

  • B vitamins, especially folate, B6 and B12. Most prenatal supplements provide the recommended RDA of folate for pregnant women, but not all contain RDA amounts of B6 and B12.
  • Calcium and magnesium. Very few prenatal supplements provide the recommended RDA for calcium and magnesium.
  • Omega-3s, especially DHA. Very few prenatal supplements provide DHA, and the few that do usually provide inadequate amounts of DHA.

So, when you are having your nutrition conversation with your doctor, you might not want to limit your conversation to iron and vitamin D.

Alternately, as I suggested last week’s issue of “Health Tips From the Professor”, you might wish to add a multivitamin supplement and an omega-3 supplement providing at least 300 mg of DHA plus EPA. This simple step would be sufficient to assure you have adequate levels of nutrients thought to be important for reducing the risk of prenatal depression.

And, of course, there are other lifestyle factors, as well. For example:

  • Diets high in highly processed foods are known to increase the risk of depression. And whole food, primarily plant-based diets decrease the risk of depression.
  • Overweight and obesity increase the risk of depression.
  • Regular exercise decreases the risk of depression.

The Bottom Line

A recent study looked at whether taking a prenatal supplement was sufficient to eliminate deficiencies of iron and vitamin D during pregnancy and whether deficiencies of these two nutrients during the second trimester of pregnancy increased the risk of depression during the third trimester.

When the investigators looked at iron and vitamin D status during the second trimester:

  • 14.8% of the women were low in vitamin D but had adequate iron levels.
  • 18.4% of the women were low in iron but had adequate levels of vitamin D.
  • 3.5% of the women were low in both iron and vitamin D.

But the important question is whether the iron and vitamin D insufficiencies seen in this study mattered. The data suggested that they did.

  • For pregnant women with low iron, but adequate vitamin D levels in the second trimester, there was a small, but significant, increased risk of experiencing depression symptoms in the third trimester.
  • For pregnant women with low iron and vitamin D levels in the second trimester, the risk of experiencing depression symptoms in the third trimester increased by 2.2 points in the 30-point Edinburg Depression Scale.
  • This is equivalent to a 7.4% increased risk of depression from deficiencies of iron and vitamin D alone.

When you consider that iron and vitamin D are just two of 8 or more nutrients thought to be important for preventing depression during pregnancy, the question becomes what you can do to decrease your risk of developing depression during pregnancy and after the birth of your child.

For more details about the study and what it means for you, read the article above.

These statements have not been evaluated by the Food and Drug Administration. This information is not intended to diagnose, treat, cure, or prevent any disease.

 ____________________________________________________________________________

My posts and “Health Tips From the Professor” articles carefully avoid claims about any brand of supplement or manufacturer of supplements. However, I am often asked by representatives of supplement companies if they can share them with their customers.

My answer is, “Yes, as long as you share only the article without any additions or alterations. In particular, you should avoid adding any mention of your company or your company’s products. If you were to do that, you could be making what the FTC and FDA consider a “misleading health claim” that could result in legal action against you and the company you represent.

For more detail about FTC regulations for health claims, see this link.

https://www.ftc.gov/business-guidance/resources/health-products-compliance-guidance

___________________________________________________________________________

About The Author

Dr. Chaney has a BS in Chemistry from Duke University and a PhD in Biochemistry from UCLA. He is Professor Emeritus from the University of North Carolina where he taught biochemistry and nutrition to medical and dental students for 40 years.  Dr. Chaney won numerous teaching awards at UNC, including the Academy of Educators “Excellence in Teaching Lifetime Achievement Award”. Dr Chaney also ran an active cancer research program at UNC and published over 100 scientific articles and reviews in peer-reviewed scientific journals. In addition, he authored two chapters on nutrition in one of the leading biochemistry text books for medical students.

Since retiring from the University of North Carolina, he has been writing a weekly health blog called “Health Tips From the Professor”. He has also written two best-selling books, “Slaying the Food Myths” and “Slaying the Supplement Myths”. And most recently he has created an online lifestyle change course, “Create Your Personal Health Zone”. For more information visit https://chaneyhealth.com.

For the past 45 years Dr. Chaney and his wife Suzanne have been helping people improve their health holistically through a combination of good diet, exercise, weight control and appropriate supplementation.

Can Personalized Diets Help Control Blood Sugar?

What Does This Study Mean For You? 

Author: Dr. Stephen Chaney 

Personalized diets are highly advertised. We are told to forget the old “one size fits all” diets of the past. We are told we are all different, so diets should be individualized to us.

We are promised that by collecting DNA samples from our tissue or bacteria in our gut, blood samples, and personal medical history, a personalized diet can be created that “fits us like a glove”.

But are those promises true, or are they hype? Diets to control blood sugar spikes should be a perfect topic for testing those claims. Millions of Americans have trouble controlling their blood sugar levels. Specifically:

  • 1 million adults (14.7% of US adults) have diabetes, mostly type 2 diabetes.
  • 6 million adults (38.0% of US adults) have prediabetes.
    • That amounts to 52% of the US population who have trouble controlling blood sugar levels.
  • Previous studies have shown that prediabetes and type 2 diabetes are largely reversible with diet and lifestyle change.
  • Recent studies have shown tremendous inter-person variability in the blood sugar response to any given food.
  • Previous studies have shown that our gut bacteria influence our blood sugar response to foods.

In theory, blood sugar control should be the perfect candidate for personalized diets. With that in mind, the authors of this study have created an algorithm called PNP (Personal Nutrition Program) that combines continuous blood glucose monitoring, HbA1c measurement (a measure of blood sugar control), personal characteristics (physical activities, sleep times, stress, and hunger), and a DNA analysis of stool samples to identify the species of gut bacteria. They also created a PNP app to allow participants to monitor and modify the foods they ate on a continuous basis.

In this study (AY Kharmats et al, The American Journal of Clinical Nutrition, 118: 443-451, 2023) the authors compared the effectiveness of their Personalized Nutrition Program algorithm with a standard, one-size-fits-all, low fat diet for improving blood sugar control in patients with prediabetes and type 2 diabetes.

Note: They used a low fat diet because, despite what you may have heard, low fat diets are better than low carb diets for diabetics. Of course, the low fat diet they used was created by dietitians. The carbohydrates came from whole foods rather than added sugars.

How Was The Study Done? 

Clinical StudyThe investigators recruited 156 participants from the NYU Langone Health Center between January 2018 and March 2021. The participants selected were overweight with prediabetes or moderately controlled type 2 diabetes. For participants with type 2 diabetes, it was managed with lifestyle alone or lifestyle plus metformin. Other characteristic of the study participants were:

  • Gender: 33.5% male, 66.5% female.
  • Race & Ethnicity: 55.7% white, 24.1% black, 16.5% Hispanic.
  • Education: 69.5% with a college degree.
  • Baseline BMI: 33 (Obese).
  • Baseline HbA1c: 5.8% (prediabetic range) with 12% of participants ≥6.5% (diabetic range).

The participants were randomly divided into two groups that were matched with respect to weight and blood sugar control. One group was put on a diet based on the investigator’s PNP algorithm. The other group was put on a standardized low fat (< 25% of calories from fat) diet that is often used with diabetic patients.

Upon admission to the study, blood samples were drawn for HbA1c, a detailed questionnaire was filled out, and stool samples were obtained for DNA analysis to identify the species of bacteria in their gut.

Each participant was given a continuous glucose monitoring device to wear during the study. This allowed the investigators to monitor the participants blood sugar control throughout the study.

All this information was used to provide individual diet recommendations for the personalized diet group using the PNP algorithm developed by the investigators.

The study lasted 6 months and measured improvements in blood sugar control as assessed by a decrease in blood sugar spikes and a reduction in HbA1c.

Both Groups were put on a registered dietitian-led behavioral intervention program targeting 7% weight loss and a calorie deficit goal of 500 calories per day. The 1-hour sessions were conducted by Webex weekly for 4 weeks and then every other week for the remaining 5 months. The sessions included:

  • Education (e.g., obesity risks, benefits of weight loss, strategies for restricting calories, protocols for aerobic exercise and strength training, and dealing with weight loss plateaus)
  • Behavioral change (e.g., importance of behavioral change, goal setting, self-reward, and problem-solving around common barriers to weight loss success)

The participants were advised to gradually build up to 150 min/week of moderate intensity exercise.

Each participant was given access to the PNP mobile app designed by the investigators. The app provided real-time feedback regarding their dietary intake relative to the target specific to their group (low fat diet or personalized diet). Participants were asked to use the app to:

  • Enter their dietary intake and self-monitor their meals (If the meal did not match the target specific to their group, the participants were trained how to substitute other foods, so their meal better matched their target.)
  • For the Standardized Low Fat Group, the PNP app provided real-time feedback regarding calorie intake and macronutrient distribution for meals and snacks logged in by the participants.
  • For the Personalized Group the PNP app scored meals as excellent, very good, good, bad, or very bad based on the PNP algorithm developed by the investigators.

Can Personalized Diets Help Control Blood Sugar? 

The results were clear-cut:

  • Weight loss was identical on both diets. This is no surprise. The study design included an exceptionally well-designed weight loss protocol for both groups.
  • The decrease in HbA1c was identical on both diets.
  • The improvement in blood sugar control was identical on both diets.

The investigators concluded, “[The] personalized diet did not result in an increased reduction in GV [blood sugar control] or HbA1c in patients with prediabetes or moderately controlled type 2 diabetes compared to a standardized diet.”

Since the investigators had designed the algorithm used to create personalized diets for this study, this was probably not the result they wanted.

So, they added, “Additional subgroup analyses may help to identify patients who are more likely to benefit from this personalized intervention.”

What Does This Study Mean For You? 

QuestionsThis first takeaway from this study was obvious:

  • The personally designed diet did not perform any better than a standard, one size fits all, diet at improving blood sugar control.

Of course, this was not any standard diet. It was a diet that has been used successfully with diabetics for years. However, a lot of research had gone into developing the personalized diet. One might have expected it to perform better.

This is not the first study in which a personalized diet has performed no better than a standard diet. It doesn’t mean that the concept behind personalized diets is faulty. It just means we don’t yet know enough to design a personalized diet that really works.

The second takeaway from this study might be less obvious:

  • Weight loss is the most important factor for improving blood sugar control. Any diet that reduces weight will improve blood sugar control. This is also true for many other health issues such as high cholesterol, high blood pressure, high triglycerides, and osteoarthritis.
  • However, this should not come as a surprise either.
    • Vegan and keto diets are polar opposites. Yet both give similar short-term weight loss and provide similar short-term health benefits.
    • Studies have shown that intermittent fasting gives no better weight loss and health benefits than any diet that cuts calories to a similar extent.
    • In other words, the diet you choose or the way you choose to restrict calories doesn’t matter. It is weight loss that provides the health benefits.
  • However, diet does appear to matter in the long term. If you look at studies ranging from 10 to 30 years, primarily plant-based diets provide better health benefits than primarily meat-based diets. And diets consisting primarily of whole, unprocessed foods provide better health benefits than diets high in processed foods.

Finally, there is an important corollary to this study showing that a personalized diet performed no better than a standardized diet at controlling blood sugar.

  • Some companies are trying to sell you expensive personalized diets with extravagant claims about the health benefits of their diet. Be wary of those diets. The science supporting their diets is premature. Their claims may be misleading.
  • And if the companies claim their diet is supported by published clinical studies, you should evaluate those studies carefully. The study I reviewed in this article was an exceptionally well-designed study. Any study that does not control for weight loss is likely to provide misleading results.

The Bottom Line 

A recent study compared the effectiveness of a personalized diet and a standardized diet in improving blood sugar control for patients with prediabetes or type 2 diabetes. The results were clear-cut:

  • Weight loss was identical on both diets. This is no surprise. The study design included an exceptionally well-designed weight loss protocol for both groups.
  • The decrease in HbA1c was identical on both diets.
  • The improvement in blood sugar control was identical on both diets.

This doesn’t mean that the concept behind personalized diets is faulty. It just means we don’t yet know enough to design a personalized diet that really works.

For more information on this study and what it means for you, read the article above.

These statements have not been evaluated by the Food and Drug Administration. This information is not intended to diagnose, treat, cure or prevent any disease.

______________________________________________________________________________

My posts and “Health Tips From the Professor” articles carefully avoid claims about any brand of supplement or manufacturer of supplements. However, I am often asked by representatives of supplement companies if they can share them with their customers.

My answer is, “Yes, as long as you share only the article without any additions or alterations. In particular, you should avoid adding any mention of your company or your company’s products. If you were to do that, you could be making what the FTC and FDA consider a “misleading health claim” that could result in legal action against you and the company you represent.

For more detail about FTC regulations for health claims, see this link.

https://www.ftc.gov/business-guidance/resources/health-products-compliance-guidance

_____________________________________________________________________

About The Author 

Dr. Chaney has a BS in Chemistry from Duke University and a PhD in Biochemistry from UCLA. He is Professor Emeritus from the University of North Carolina where he taught biochemistry and nutrition to medical and dental students for 40 years.  Dr. Chaney won numerous teaching awards at UNC, including the Academy of Educators “Excellence in Teaching Lifetime Achievement Award”.

Dr Chaney also ran an active cancer research program at UNC and published over 100 scientific articles and reviews in peer-reviewed scientific journals. In addition, he authored two chapters on nutrition in one of the leading biochemistry text books for medical students.

Since retiring from the University of North Carolina, he has been writing a weekly health blog called “Health Tips From the Professor”. He has also written two best-selling books, “Slaying the Food Myths” and “Slaying the Supplement Myths”. And most recently he has created an online lifestyle change course, “Create Your Personal Health Zone”. For more information visit https://chaneyhealth.com.

 

For the past 45 years Dr. Chaney and his wife Suzanne have been helping people improve their health holistically through a combination of good diet, exercise, weight control and appropriate supplementation.

Eat Green

Can Diet Affect The Health Of Our Planet? 

Author: Dr. Stephen Chaney

Earth DayEarth Day was yesterday. So, it is time for my annual reminder that what you eat affects a lot more than just your health. It affects the health of our planet. Once again, it’s time to ask yourself, “Is my diet destroying the planet?

This is not a new question, but a recent commission of international scientists has conducted a comprehensive study into our diet and its effect on our health and our environment. Their report (W. Willet et al, The Lancet, 393, issue 10170, 447-492, 2019) serves as a dire warning of what will happen if we don’t change our ways.

The commission carefully evaluated diet and food production methods and asked three questions:

  • Are they good for us?
  • Are they good for the planet?
  • Are they sustainable? Will they be able to meet the needs of the projected population of 10 billion people in 2050 without degrading our environment.

The commission described the typical American diet as a “lose-lose-lose diet”. It is bad for our health. It is bad for the planet. And it is not sustainable.

In its place they carefully designed their version of a primarily plant-based diet they called a “win-win-win diet”. It is good for our health. It is good for the planet. And it is sustainable.

In their publication they refer to their diet as the “universal healthy reference diet” (What else would you expect from a committee?). However, it has become popularly known as the “Planetary Diet”.

I have spoken before about the importance of a primarily plant-based diet for our health. In that context it is a personal choice. It is optional.

However, this report is a wake-up call. It puts a primarily plant-based diet in an entirely different context. It is essential for the survival of our planet. It is no longer optional.

If you care about our environment…If you care about saving our planet, there is no other choice.

How Was The Study Done?

The publication (W. Willet et al, The Lancet, 393, issue 10170, 447-492, 2019) was the report of the EAT-Lancet Commission on Healthy Diets from Sustainable Food Systems. This Commission convened 30 of the top experts from across the globe to prepare a science-based evaluation of the effect of diet on both health and sustainable food production through the year 2050. The Commission included world class experts on healthy diets, agricultural methods, climate change, and earth sciences. The Commission reviewed 356 published studies in preparing their report.

Can Diet Affect The Health Of Our Planet?

Factory FarmWhen they looked at the effect of food production on the environment, the Commission concluded:

  • “Strong evidence indicates that food production is among the largest drivers of global environmental change.” Specifically, the commission reported:
    • Agriculture occupies 40% of global land (58% of that is for pasture use).
    • Food production is responsible for 30% of global greenhouse gas emissions and 70% of freshwater use.
    • Conversion of natural ecosystems to croplands and pastures is the largest factor causing species to be threatened with extinction. Specifically, 80% of extinction threats to mammals and bird species are due to agricultural practices.
    • Overuse and misuse of nitrogen and phosphorous in fertilizers causes eutrophication. In case you are wondering, eutrophication is defined as the process by which a body of water becomes enriched in dissolved nutrients (such as phosphates from commercial fertilizer) that stimulate the growth of algae and other aquatic plant life, usually resulting in the depletion of dissolved oxygen. This creates dead zones in lakes and coastal regions where fish and other marine organisms cannot survive.
  • About 60% of world fish stocks are fully fished and more than 30% are overfished. Because of this, catch by global marine fisheries has been declining since 1996.
  • “Reaching the Paris Agreement of limiting global warming…is not possible by only decarbonizing the global energy systems. Transformation to healthy diets from sustainable food systems is essential to achieving the Paris Agreement.
  • The world’s population is expected to increase to 10 billion by 2050. The current system of food production is unsustainable.

Food ChoicesWhen they looked at the effect of the foods we eat on the environment, the Commission concluded:

  • Beef and lamb are the biggest contributors to greenhouse gas emissions and land use.
    • The concern about land use is obvious because of the large amount of pastureland required to raise cattle and sheep.
    • The concern about greenhouse gas emissions is because cattle and sheep are ruminants. They not only breathe out CO2, but they also release methane into the atmosphere from fermentation in their rumens of the food they eat. Methane is a potent greenhouse gas, and it persists in the atmosphere 25 times longer than CO2.

The single most important thing we can do as individuals to reduce greenhouse gas emissions is to eat less beef and lamb. [Note: grass fed cattle produce more greenhouse gas emissions than cattle raised on corn because they require 3 years to bring to market rather than 2 years.] 

    • In contrast, plant crops reduce greenhouse gas emissions by removing CO2 from the atmosphere.
  • In terms of energy use beef, lamb, pork, chicken, dairy, and eggs all require much more energy to produce than any of the plant foods.
  • In terms of eutrophication of our lakes and oceans, beef, lamb, and pork all cause much more eutrophication than any plant food. Dairy and eggs cause more eutrophication than any plant food except fruits.

Eat Green

Planetary DietIn the words of the Commission: “[The Planetary Diet] largely consists of vegetables, fruits, whole grains, legumes, nuts, and unsaturated oils. It includes a low to moderate amount of seafood, poultry, and eggs. It includes no or a very low amount of red meat, processed meat, sugar, refined grains, and starchy vegetables.”

When described in that fashion it sounds very much like other healthy diets such as semi-vegetarian, Mediterranean, DASH, and Flexitarian. However, what truly distinguishes it from the other diets is the restrictions placed on the non-plant portion of the diet to make it both environmentally friendly and sustainable. Here is a more detailed description of the diet:

  • It starts with a vegetarian diet. Vegetables, fruits, beans, nuts, soy foods, and whole grains are the foundation of the diet.
  • It allows the option of adding one serving of dairy a day (It turns out that cows produce much less greenhouse emissions per serving of dairy than per serving of beef. That’s because cows take several years to mature before they can be converted to meat, and they are emitting greenhouse gases the entire time).
  • It allows the option of adding one 3 oz serving of fish or poultry or one egg per day.
  • It allows the option of swapping seafood, poultry, or egg for a 3 oz serving of red meat no more than once a week. If you want a 12 oz steak, that would be no more than once a month.

This is obviously very different from the way most Americans currently eat. According to the Commission:

  • “This would require greater than 50% reduction in consumption of unhealthy foods, such as red meat and sugar, and greater than 100% increase in the consumption of healthy foods, such as nuts, fruits, vegetables, and legumes”.
  • “In addition to the benefits for the environment, “dietary changes from current diets to healthy diets are likely to substantially benefit human health, averting about 10.8-11.6 million deaths per year globally.”

What Else Did The Commission Recommend?

In addition to changes in our diets, the Commission also recommended several changes in the way food is produced. Here are a few of them.

  1. Reduce greenhouse gas emissions from the fuel used to transport food to market.

2) Reduce food losses and waste by at least 50%.

3) Make radical improvements in the efficiency of fertilizer and water use. In terms of fertilizer, the change would be two-fold:

    • In developed countries, reduce fertilizer use and put in place systems to capture runoff and recycle the phosphorous.
    • In third world countries, make fertilizer more available so that crop yields can be increased, something the Commission refer to as eliminating the “yield gap” between third world and developed countries.

4) Stop the expansion of new agricultural land use into natural ecosystems and put in place policies aimed at restoring and re-foresting degraded land.

5) Manage the world’s oceans effectively to ensure that fish stocks are used responsibly and global aquaculture (fish farm) production is expanded sustainability.

What we can do: While most of these are government level policies, we can contribute to the first three by reducing personal food waste and purchasing organic produce locally whenever possible.

What Does This Mean For You?

QuestionsIf you are a vegan, you are probably asking why the Commission did not recommend a completely plant-based diet. The answer is that a vegan diet is perfect for the health of our planet. However, the Commission wanted to make a diet that was as consumer friendly as possible and still meet their goals of a healthy, environmentally friendly, and sustainable diet.

If you are eating a typical American diet or one of the fad diets that encourage meat consumption, you are probably wondering how you can ever make such drastic changes to your diet. The answer is “one step at a time”. If you have read the Forward to my books “Slaying The Food Myths” or “Slaying the Supplement Myths”, you know that my wife and I did not change our diet overnight. Our diet evolved to something very close to the Planetary Diet over a period of years.

The Commission also purposely designed the Planetary Diet so that you “never have to say never” to your favorite foods. Three ounces of red meat a week does not sound like much, but it allows you a juicy steak once a month.

Sometimes you just need to develop a new mindset. As I shared in my books, my father prided himself on grilling the perfect steak. I love steaks, but I decided to set a few parameters. I don’t waste my red meat calories on anything besides filet mignon at a fine restaurant. It must be a special occasion, and someone else must be buying. That limits it to 2-3 times a year. I still get to enjoy good steak, and I stay well within the parameters of the Planetary diet.

Develop your strategy for enjoying some of your favorite foods within the parameters of the Planetary Diet and have fun with it.

The Bottom Line

Is your diet destroying the planet? This is not a new question, but a recent commission of international scientists has conducted a comprehensive study into our diet and its effect on our health and our environment. Their report serves as a dire warning of what will happen to us and our planet if we don’t change our ways.

The Commission carefully evaluated diet and food production methods and asked three questions:

  • Are they good for us?
  • Are they good for the planet?
  • Are they sustainable? Will they be able to meet the needs of the projected population of 10 billion people in 2050 without degrading our environment.

The Commission described the typical American diet as a “lose-lose-lose diet”. It is bad for our health. It is bad for the planet. And it is not sustainable.

In its place they carefully designed their version of a primarily plant-based diet they called a “win-win-win diet”. It is good for our health. It is good for the planet. And, it is sustainable.

In their publication they refer to their diet as the “universal healthy reference diet” (What else would you expect from a committee?). However, it has become popularly known as the “Planetary Diet”.

The Planetary Diet is similar to other healthy diets such as semi-vegetarian, Mediterranean, DASH, and Flexitarian. However, what truly distinguishes it from the other diets is the restrictions placed on the non-plant portion of the diet to make it both environmentally friendly and sustainable (for details, read the article above).

I have spoken before about the importance of a primarily plant-based diet for our health. In that context it is a personal choice. It is optional.

However, this report is a wake-up call. It puts a primarily plant-based diet in an entirely different context. It is essential for the survival of our planet. It is no longer optional.

If you care about global warming…If you care about saving our planet, there is no other choice.

For more details read the article above.

These statements have not been evaluated by the Food and Drug Administration. This information is not intended to diagnose, treat, cure or prevent any disease.

______________________________________________________________________________

My posts and “Health Tips From the Professor” articles carefully avoid claims about any brand of supplement or manufacturer of supplements. However, I am often asked by representatives of supplement companies if they can share them with their customers.

My answer is, “Yes, as long as you share only the article without any additions or alterations. In particular, you should avoid adding any mention of your company or your company’s products. If you were to do that, you could be making what the FTC and FDA consider a “misleading health claim” that could result in legal action against you and the company you represent.

For more detail about FTC regulations for health claims, see this link.

https://www.ftc.gov/business-guidance/resources/health-products-compliance-guidance

______________________________________________________________________

About The Author 

Dr. Chaney has a BS in Chemistry from Duke University and a PhD in Biochemistry from UCLA. He is Professor Emeritus from the University of North Carolina where he taught biochemistry and nutrition to medical and dental students for 40 years.  Dr. Chaney won numerous teaching awards at UNC, including the Academy of Educators “Excellence in Teaching Lifetime Achievement Award”.

Dr Chaney also ran an active cancer research program at UNC and published over 100 scientific articles and reviews in peer-reviewed scientific journals. In addition, he authored two chapters on nutrition in one of the leading biochemistry text books for medical students.

Since retiring from the University of North Carolina, he has been writing a weekly health blog called “Health Tips From the Professor”. He has also written two best-selling books, “Slaying the Food Myths” and “Slaying the Supplement Myths”. And most recently he has created an online lifestyle change course, “Create Your Personal Health Zone”. For more information visit https://chaneyhealth.com.

For the past 45 years Dr. Chaney and his wife Suzanne have been helping people improve their health holistically through a combination of good diet, exercise, weight control and appropriate supplementation.

Do Omega-3s Reduce Osteoarthritis Pain?

How Do Rheumatoid And Osteoarthritis Differ?

Author: Dr. Stephen Chaney 

knee painThis week I am concluding my series on recent omega-3 advances by reviewing a meta-analysis that asks whether omega-3s are beneficial for people with osteoarthritis.

This is an important question because osteoarthritis affects around 32.5 million adults in the United States, and that number is increasing each year as our population ages. Osteoarthritis causes pain and disabilities that can significantly affect quality of life.

And the costs are high. Health care costs due to osteoporosis are around $140 billion/year. And when you include lost workdays, the annual cost is around $468 billion.

There are several medications for reducing symptoms of osteoarthritis. But they each have side effects and some patients cannot tolerate them. Joint replacement surgery is the final resort. But the recovery period is long, and the surgery isn’t always effective. For both reasons many patients with osteoarthritis are looking for natural solutions.

Most of the research on omega-3s and arthritis has been done with patients who have rheumatoid arthritis. Omega-3 supplements have been shown to reduce the pain, swelling of the joints, and inflammation associated with rheumatoid arthritis for many people with the disease.

Based on several dose-response studies, the NIH says the optimal dose is around 2.7 gm/day of EPA + DHA but cautions not to go above 3 gm/day without your doctor’s OK.

The evidence is less clear for omega-3s and osteoarthritis. Some studies suggest that EPA + DHA reduce the pain and inflammation associated with osteoarthritis. But other studies have come up empty. There is no consensus as to whether omega-3s are beneficial for people with osteoarthritis.

When there is disagreement between individual studies, a meta-analysis of the studies is often helpful. By pooling the data from multiple studies, a meta-analysis can smooth out some of the differences between the studies and accumulate enough data points to discover effects that would not have been statistically significant with the smaller data sets from individual studies.

With that in mind, the authors of this manuscript (W Den et al, Journal of Orthopaedic Surgery and Research, 18: 381, 3023) performed a meta-analysis on the data obtained from 9 double-blind, placebo-controlled studies looking at the effect of omega-3s versus a placebo on both pain and joint mobility in osteoarthritis patients.

How Do Rheumatoid And Osteoarthritis Differ?

While the causes of rheumatoid arthritis and osteoarthritis are very different, there are some underlying similarities between the two diseases that suggest both might benefit from omega-3 supplementation.

Rheumatoid Arthritis: Rheumatoid arthritis is thought to be an autoimmune disease, which means that our immune system attacks our cells rather than foreign invaders. It results in chronic inflammation that attacks our joints and can affect other tissues in our body.

It initially affects the lining of our joints which can result in painful, swollen joints. As the disease progresses it can also lead to bone erosion and joint deformity.

Osteoarthritis:Osteoarthritis is generally thought of as a “wear and tear” disease. It is associated with sports injuries and accidents. It is also associated with stress to particular joints due to repeated motions associated with either sports or a job. Obesity also increases wear and tear of the joints because it increases the load on the joints.

The wear and tear causes the cartilage that cushions the junction between bones to deteriorate. Eventually, the cartilage deteriorates to the extent that bone is grinding against bone, which can lead to bone loss and deformities.

Eventually, this results in an inflammation of the joint lining which causes pain and accelerates bone loss. It also causes deterioration of the connective tissue which holds bones together and connects them to muscle.

What Do These Diseases Have In Common? Inflammation is the common factor associated with both rheumatoid and osteoarthritis, and many studies suggest that omega-3s reduce inflammation. In the simplistic description of the two diseases I shared above, it sounds like inflammation occurs much earlier in the disease process for rheumatoid arthritis than for osteoarthritis. This might suggest that omega-3s could be more effective at reducing the symptoms and progression of rheumatoid arthritis than of osteoarthritis.

However, we know that the risk of developing osteoarthritis is increased by chronic inflammation caused by obesity, diseases like diabetes, and/or an inflammatory diet.

How Was This Study Done?

clinical studyThis study was a meta-analysis of 9 double-blind, placebo-controlled clinical studies looking at the effect of omega-3 fatty acids on the pain and loss of joint mobility associated with osteoarthritis. These studies were performed in countries from around the world and included a total of 2,070 participants.

The criteria for inclusion in the meta-analysis were:

1) The articles were written in English.

2) The studies had to be double-blind, placebo-controlled studies (The gold standard for clinical studies).

3) Patients with osteoarthritis were randomly assigned to an intervention group receiving omega-3 supplementation or a placebo group receiving olive oil or another plant oil.

4) The studies measured efficacy and safety outcomes including joint pain (efficacy), joint mobility (efficacy), and treatment-related adverse events (safety).

5) Patients in both the omega-3 and placebo groups were using medications to reduce osteoarthritis symptoms when they were enrolled in the study and were advised to continue with their prescribed medicines for the duration of the study.

The characteristics of the clinical studies included in this meta-analysis were:

  • Sample size (47-1221), Average = 230.
  • Mean age (55.9-68), Average = 63.
  • % men (13.8-45.1%), Average = 31%.
  • Omega-3 (EPA + DHA) dose (350 mg/day – 2,400 mg/day), Average = 1,085 mg/day.

Do Omega-3s Reduce Osteoarthritis Pain?

Question MarkWhen the data from all 9 studies were combined in a single meta-analysis, omega-3 (EPA + DHA) supplementation:

  • Reduced joint pain by 29% compared to the placebo.
  • Increased joint mobility by 21% compared to the placebo.
  • Was not associated with any adverse effects.

The authors concluded, “The results of the meta-analysis indicate that supplementation with omega-3 fatty acids is effective to relieve pain and improve joint function in patients with osteoarthritis, without increasing the risk of treatment-related adverse events. These findings support the use on omega-3 fatty acid supplementation as an alternative treatment for osteoarthritis.”

What Are The Strengths and Limitations Of This Study?

strengths and weaknessesStrengths:

  • All the studies included in this meta-analysis were randomized, double-blind, placebo-controlled studies (the gold standard for clinical trials).
  • All the individual studies that qualified for this meta-analysis found that omega-3 supplementation reduced joint pain and improved joint mobility. This improves confidence that the conclusions of the meta-analysis are correct. The meta-analysis simply improved the statistical significance of this conclusion by combining the data from the individual studies.

Limitations:

  • The biggest limitation was that the individual studies included in this meta-analysis were not performed under the guidelines of the “Fatty Acids and Outcomes Research Consortium” that I discussed in last week’s issue of “Health Tips From the Professor”.
    • The “Fatty Acids and Outcomes Research Consortium” guidelines harmonize the designs of individual studies, which strengthens the meta-analysis.
      • In contrast, the design of the individual studies within this meta-analysis was very different, which prevented the meta-analysis from being able to determine the optimal dose of omega-3 supplements and the minimum time required for omega-3 supplementation to significantly reduce the symptoms of osteoarthritis.
    • The “Fatty Acids and Outcomes Research Consortium” guidelines would have also required these studies to measure tissue levels of omega-3s (something called Omega-3 Index) at the beginning and end of each study. This was not done in any of these studies.
      • This is important because if a patient’s tissue levels of omega-3s at the beginning of the study were already in the optimal range, you would expect little additional benefit from supplementation for that patient.
  • All the individual studies were very small. This limits the ability of these studies to provide definitive conclusions. Unfortunately, this is probably unavoidable.
    • Double blind, placebo-controlled clinical studies are expensive. Only major pharmaceutical companies have the multi-million-dollar budgets required to conduct large double blind, placebo-controlled clinical studies that would provide more definitive evidence that omega-3 supplementation reduces the symptoms of osteoarthritis – and the follow-up studies that would determine the optimal dose of omega-3 supplements and the minimum time required to show an effect of omega-3 supplementation.
  • The patients in these studies were already taking medications to reduce their osteoarthritis symptoms prior to entering the study and were instructed to continue taking those medications during the study. This means that the studies were not asking whether omega-3s alone were effective at reducing osteoarthritis symptoms. They were asking whether omega-3 supplementation provided any additional benefits for people who were already taking medications to reduce symptoms.
    • Unfortunately, this is also probably unavoidable. Current guidelines consider it unethical to withhold the medical “standard of care” from any patient in a clinical trial.

What Does This Study Mean For You?

Questioning WomanThis study, while not definitive, strengthens the evidence that omega-3 supplements containing EPA + DHA may reduce joint pain and improve joint mobility for people with osteoarthritis. It also shows that the doses required to achieve these benefits are not associated with any significant side effects.

While large scale double blind, placebo-controlled clinical studies to confirm these conclusions would be nice, they are unlikely to occur for the reasons discussed above.

The investigators said, “[This study shows that] supplementation of omega-3 fatty acids is effective to relieve pain and improve joint function in patients with osteoarthritis…These findings support the use of omega-3 fatty acid supplementation as an alternative treatment for osteoarthritis.”

This might lead you to believe that omega-3 fatty acids can potentially replace medications for reducing osteoarthritis pain and loss of joint mobility. That may be true, but that is not what the study showed.

Patients in both the omega-3 and placebo group continued their prescribed medicines for osteoarthritis. In reality, the study only shows that omega-3s provide additional benefit for people already taking osteoarthritis medications. The effect of omega-3 supplements by themselves has not been tested and, as I discussed above, is not likely to be tested in the foreseeable future.

However, the use of omega-3 supplements may allow you to reduce or eliminate the medications you are on for osteoarthritis and may delay the need for joint replacement surgery. Of course, if you wish to reduce/eliminate your medications and/or delay joint replacement surgery, I recommend consulting with your doctor first.

Finally, this study provides no information on the optimal dose of omega-3s. Some studies suggest the dose of omega-3s needed to reduce osteoarthritis symptoms may be less than that required to reduce rheumatoid arthritis symptoms, but that evidence is weak.

In the absence of good dose response data, I recommend you aim for an omega-3 index of 8%. You will find a more detailed discussion of the Omega-3 Index and how to use it in last week’s “Health Tips From the Professor” article .

The Bottom Line

A recent meta-analysis looked at the effect of omega-3 supplementation on the pain and lack of joint mobility associated with osteoarthritis.

The study showed that omega-3 (EPA + DHA) supplementation:

  • Reduced joint pain by 29% compared to the placebo.
  • Increased joint mobility by 21% compared to the placebo.
  • Was not associated with any adverse effects.

The authors concluded, “The results of the meta-analysis indicate that supplementation with omega-3 fatty acids is effective to relieve pain and improve joint function in patients with osteoarthritis, without increasing the risk of treatment-related adverse events.”

For more details about the study and what it means for you, read the article above.

These statements have not been evaluated by the Food and Drug Administration. This information is not intended to diagnose, treat, cure, or prevent any disease. 

_____________________________________________________________________________

My posts and “Health Tips From the Professor” articles carefully avoid claims about any brand of supplement or manufacturer of supplements. However, I am often asked by representatives of supplement companies if they can share them with their customers.

My answer is, “Yes, as long as you share only the article without any additions or alterations. In particular, you should avoid adding any mention of your company or your company’s products. If you were to do that, you could be making what the FTC and FDA consider a “misleading health claim” that could result in legal action against you and the company you represent.

For more detail about FTC regulations for health claims, see this link.

https://www.ftc.gov/business-guidance/resources/health-products-compliance-guidance

_______________________________________________________________________

About The Author 

Dr. Chaney has a BS in Chemistry from Duke University and a PhD in Biochemistry from UCLA. He is Professor Emeritus from the University of North Carolina where he taught biochemistry and nutrition to medical and dental students for 40 years.  Dr. Chaney won numerous teaching awards at UNC, including the Academy of Educators “Excellence in Teaching Lifetime Achievement Award”. Dr Chaney also ran an active cancer research program at UNC and published over 100 scientific articles and reviews in peer-reviewed scientific journals. In addition, he authored two chapters on nutrition in one of the leading biochemistry text books for medical students.

Since retiring from the University of North Carolina, he has been writing a weekly health blog called “Health Tips From the Professor”. He has also written two best-selling books, “Slaying the Food Myths” and “Slaying the Supplement Myths”. And most recently he has created an online lifestyle change course, “Create Your Personal Health Zone”. For more information visit https://chaneyhealth.com.

For the past 45 years Dr. Chaney and his wife Suzanne have been helping people improve their health holistically through a combination of good diet, exercise, weight control and appropriate supplementation.

The Good News About Omega-3s And Stroke

How Do Omega-3s Affect The Two Types Of Stroke?

Author: Dr. Stephen Chaney 

strokeI am continuing my series on recent omega-3 breakthroughs. Last week I reviewed a study showing that the omega-3s EPA and DHA lowered blood pressure. Since high blood pressure is a major contributing factor to stroke risk, it only makes sense that EPA and DHA would also decrease the risk of strokes.

In last week’s article I mentioned that high blood pressure is called a silent killer. That is because the symptoms of high blood pressure are easy to ignore and often confused with other illnesses.

For many people the first indication they have a problem is when they have a stroke, which either kills them or forever impacts their quality of life. Let me share some statistics with you.

  • Every 40 seconds someone in the United States has a stroke. One in four adults over the age of 25 will have a stroke in their lifetime.
  • Every 4 minutes someone in the United States dies from a stroke. For many of them sudden death is the first indication they had a health problem.
  • The overall incidence of strokes has increased 60% in the last 20 years with most of that increase (65%) coming from younger adults (ages 20 to 45)
  • The cost of treatment, rehabilitation, and lost wages from stroke was $891 billion in 2020 and is projected to increase to $2.3 trillion in 2050.

Any way you look at it, the personal and financial costs of strokes are immense.

How Do Omega-3s Affect The Two Types Of Stroke?

There are two major kinds of stroke – ischemic stroke, which is caused by a thrombus (blood clot) in the carotid arteries leading to the brain, and hemorrhagic stroke, which is caused by bleeding from small blood vessels in the brain. Ischemic stroke accounts for around 85% of all strokes.

Ischemic strokes are caused by atherosclerosis, the buildup of fatty plaques in the walls of the carotid arteries, followed by the formation of a blood clot which lodges in the narrowed arteries. As you might expect, the prevention and treatment of ischemic strokes are similar to the prevention and treatment of heart attacks.

EPA and DHA have been shown to:

  • Reduce inflammation, which is associated with increased risk of heart disease and stroke.
  • Reduce blood pressure. High blood pressure damages the endothelial lining of blood vessels, which can lead to either build up of atherosclerotic plaque or rupturing of the blood vessels.
  • Reduce platelet aggregation and blood viscosity, which reduces the potential for inappropriate blood clots forming in the carotid arteries.

[When you cut yourself, you want a blood clot to form to stop the bleeding. That is an example of appropriate blood clot formation. However, when a blood clot forms within your arteries, it can prevent blood from reaching surrounding tissues. This is an example of inappropriate blood clot formation.]

  • Reduce the risk of atherosclerotic plaques rupturing. Rupturing of atherosclerotic plaques triggers blood clot formation, so this also decreases the risk of inappropriate blood clots forming in the carotid arteries.

Based on the known effects of EPA and DHA, it is not surprising that they would decrease the risk of ischemic strokes. But what about hemorrhagic strokes? Here the answer is not as clear cut.

  • In a previous clinical study 4 gm/day of purified EPA without DHA was associated with a slightly increased risk of bleeding events but did not increase the risk of hemorrhagic stroke.
  • High doses of pharmaceutical grade EPA have also been associated with a slightly increased risk of atrial fibrillation (Afib). In contrast, previous studies have shown that higher dietary intake of EPA + DHA are associated with a lower risk of Afib.

At present, we don’t know whether the increased risk of bleeding events and Afib are only seen at very high doses of omega-3s or are due to the use of pharmaceutical grade EPA without DHA and any of the other naturally occurring omega-3s.

However, this uncertainty has led some experts to warn that omega-3s may be a two-edge sword. They might increase the risk of hemorrhagic stroke while decreasing the risk of ischemic stroke. This uncertainty was part of the rationale for the study (JH O’Keefe et al, Stroke, 55: 50-58, 2024) I am describing today.

How Was This Study Done?

clinical studyThis study was a meta-analysis of 29 clinical studies looking at the effect of omega-3 fatty acids on the risk of both ischemic and hemorrhagic stroke. These studies were performed in 15 countries from around the world and included a total of 183,291 participants.

One major drawback of many meta-analyses is that each study in the meta-analysis is independently designed. Sometimes the studies are so different that it is difficult to fit them together in a coherent pattern.

A major strength of this meta-analysis is that all the studies were conducted within the “Fatty Acid and Outcome Research Consortium” which specifies a general protocol for the design of each study within that consortium.

For example, estimates of dietary omega-3 intake can be inaccurate and the uptake and utilization of both dietary and supplemental omega-3s vary from person to person. Because of that the Fatty Acid and Outcomes Research Consortium guideline specifies that studies rely on biomarkers of omega-3 levels in the body rather than the amount of omega-3s consumed.

The most frequently used biomarker was the percentage of omega-3s incorporated into the fatty portion of red blood cell membranes. Some studies used other biomarkers, such as the percentage of omega-3s incorporated into the fatty portion of plasma phospholipids or cholesterol-containing phospholipid particles (LDL and HDL for example).

In each case, the percentage of omega-3s is used to calculate something called an “Omega-3 Index”. Previous studies have shown that an Omega-3 Index of 4% or less correlates with a high risk of heart disease, and an Omega-3 Index of 8% or more correlates with a low risk of heart disease. In essence, this study correlated Omega-3 Index with the risk of stroke.

The Fatty Acids and Outcomes Research Consortium harmonized the studies included in this meta-analysis in several other ways, but the use of Omega-3 Index rather than omega-3 consumption was the most important.

Other key characteristics of the studies included in this meta-anaysis were:

  • The average age of participants was 65 years.
  • 82% of the participants were white and 53% were women.
  • The average length of follow-up was 14 years (range = 5-30 years).
  • 10,561 participants (5.8%) suffered a stroke during follow-up (78% ischemic, 11% hemorrhagic, and 11% unspecified).

The Good News About Omega-3s and Stroke 

good newsThe participants in these studies were divided into quintiles based on their Omega-3 Index. When those in the highest quintile (≥ 8%) were compared with those in the lowest quintile (≤ 4%):

  • Risk was reduced by 17% for total stroke and 18% for ischemic stroke. There was no effect on hemorrhagic stroke.

When the effect of individual components of the Omega-3 Index were analyzed:

  • For EPA + DHA risk was reduced by 17% for total stroke and 18% for ischemic stroke. There was no effect on hemorrhagic stroke.
  • For EPA risk was reduced by 17% for total stroke and 18% for ischemic stroke. There was no effect on hemorrhagic stroke. (You are probably starting to detect a pattern).
  • For DHA the results were only slightly different. Risk reduction was 12% for total stroke and 16% for ischemic stroke. There was no effect on hemorrhagic stroke.
  • For DPA, a minor component of the Omega-3 Index, there was no significant effect on total, ischemic, or hemorrhagic stroke.
  • There was a linear dose-response for the effect of EPA, DHA, and the two combined on the reduction in risk for both total and ischemic stroke.

When they looked at subgroups within the analysis, the results were the same for:

  • Age (<65 compared to >65).
  • Gender.
  • Studies that lasted less than 10 years and studies that lasted more than 10 years.
  • The presence of preexisting Afib.
  • The presence of preexisting cardiovascular disease.

The authors concluded, “In summary, this harmonized and pooled analysis of prospective studies showed that long-chain omega-3 levels were inversely associated with risk of total and ischemic stroke but were unrelated to risk of hemorrhagic stroke. Thus, higher dietary intake of DHA and EPA would be expected to lower risk of stroke.”

What Does This Study Mean For You?

Key Takeaways From This Study: The most important takeaway from this study is that reasonable amounts of EPA and DHA from either diet or supplementation are unlikely to increase your risk of hemorrhagic stroke (I will define reasonable below).

That is important to know because this and several other studies show that EPA and DHA decrease the risk of ischemic stroke, which accounts for around 85% of total strokes. This study shows you can reduce your risk of ischemic stroke without fearing that you will increase your risk of hemorrhagic stroke.

This study also reaffirms the importance of relying on Omega-3 Index rather than the dosage of omega-3s in a supplementation. Previous studies have shown there is significant individual variability in the uptake and utilization of dietary omega-3s.

Finally, this study shows you don’t need huge amounts of EPA and DHA to significantly decrease your risk of stroke and cardiovascular disease in general. An Omega-3 Index of ≥ 8% is sufficient to accomplish both.

How Much Omega-3s Do You Need? The authors of this manuscript are experts on the Omega-3 Index, and they estimated that:

  • To raise your Omega-3 Index from 5.4% (the median Omega-3 Index in these studies) to 8% would require about 1,000 mg/d of EPA + DHA.
  • To raise your Omega-3 Index from 3.5% (the lowest Omega-3 Index quintile in these studies) to 8% would require about 1,600 mg/d of EPA + DHA.

These intakes are well within the American Heart Association recommendations for reducing the risk of stroke and cardiovascular disease and are easily achievable from diet and supplementation.

But these estimates are based on averages, and, as I noted above, none of us are average. We differ in our ability to absorb and utilize omega-3s. So, I recommend relying on your Omega-3 Index rather than a dose of omega-3s that’s right for the average person but may not be right for you.

My recommendation would be to start with an Omega-3 test. If you are below 8%, start with the dosage of EPA + DHA the authors of today’s study recommended. Then retest in 6 months and adjust your dose based on the results of that test.

Question MarkHow Much Is Too Much? As I mentioned above, the dose response was linear for Omega-3 Index versus reduction in risk of total and ischemic strokes. So, the question becomes whether you might wish to increase your Omega-3 Index above 8% to achieve an even better reduction in stroke risk.

That is a very personal decision that only you can make but let me share some facts to help you make that decision.

  • As I mentioned above, a previous clinical trial showed an increased risk of bleeding events and Afib at a dosage of 4 gm/day of pure EPA. We don’t know whether that was because of the dose or the use of a formulation that contained only EPA without DHA and other naturally occurring long-chain omega-3s.
  • In that study the increase in bleeding events and Afib was observed in <5% of participants, which suggests that those side effects may be limited to certain high-risk individuals.
    • In this context, high risk might include individuals with preexisting Afib, individuals with a tendency towards excess bleeding, and patients on blood thinning medications.
    • However, only your physician knows all your risk factors. If you have health issues or are on medications, it is always a good idea to check with your physician before changing your omega-3 intake. And if you are considering high-dose omega-3 supplementation or exceeding an 8% Omega-3 Index, I strongly recommend that you consult with your physician first.

The Bottom Line

A recent study looked at the effect of omega-3 levels in red blood cells and other tissues (something called Omega-3 Index) on the risk of various types of stroke.

When individuals with an Omega-3 Index ≥ 8% were compared with those with an Omega-3 Index of ≤ 4%:

  • Risk was reduced by 17% for total stroke and 18% for ischemic stroke (stroke caused by blood clots in the carotid arteries). There was no effect on hemorrhagic stroke (stroke caused by bleeding from small blood vessels in the brain).

The authors concluded, “In summary, this harmonized and pooled analysis of prospective studies showed that long-chain omega-3 levels were inversely associated with risk of total and ischemic stroke but were unrelated to risk of hemorrhagic stroke. Thus, higher dietary intake of DHA and EPA would be expected to lower risk of stroke.”

This study represents an important breakthrough. There is good evidence that increased EPA + DHA from food and/or supplements reduces the risk of ischemic stroke. But some experts have cautioned it might also increase the risk of hemorrhagic stroke. This study puts that fear to rest.

For more details about the study and what it means for you, read the article above.

These statements have not been evaluated by the Food and Drug Administration. This information is not intended to diagnose, treat, cure, or prevent any disease.

_______________________________________________________________________________

My posts and “Health Tips From the Professor” articles carefully avoid claims about any brand of supplement or manufacturer of supplements. However, I am often asked by representatives of supplement companies if they can share them with their customers.

My answer is, “Yes, as long as you share only the article without any additions or alterations. In particular, you should avoid adding any mention of your company or your company’s products. If you were to do that, you could be making what the FTC and FDA consider a “misleading health claim” that could result in legal action against you and the company you represent.

For more detail about FTC regulations for health claims, see this link.

https://www.ftc.gov/business-guidance/resources/health-products-compliance-guidance 

About The Author 

Dr. Chaney has a BS in Chemistry from Duke University and a PhD in Biochemistry from UCLA. He is Professor Emeritus from the University of North Carolina where he taught biochemistry and nutrition to medical and dental students for 40 years.  Dr. Chaney won numerous teaching awards at UNC, including the Academy of Educators “Excellence in Teaching Lifetime Achievement Award”. Dr Chaney also ran an active cancer research program at UNC and published over 100 scientific articles and reviews in peer-reviewed scientific journals. In addition, he authored two chapters on nutrition in one of the leading biochemistry text books for medical students.

Since retiring from the University of North Carolina, he has been writing a weekly health blog called “Health Tips From the Professor”. He has also written two best-selling books, “Slaying the Food Myths” and “Slaying the Supplement Myths”. And most recently he has created an online lifestyle change course, “Create Your Personal Health Zone”. For more information visit https://chaneyhealth.com.

For the past 45 years Dr. Chaney and his wife Suzanne have been helping people improve their health holistically through a combination of good diet, exercise, weight control and appropriate supplementation.

 

How Much Omega-3s Are Best For Blood Pressure?

What Does This Study Mean For You?

Author: Dr. Stephen Chaney

high blood pressureI am continuing my series on recent omega-3 breakthroughs. Today I am going to cover a recent systematic review and meta-analysis (X Zhang et al, Journal of the American Heart Association, 11: e025071, 2022) that analyzed 71 double blind, placebo-controlled clinical studies with 4,973 subjects to determine the optimal dose of omega-3s needed to lower blood pressure.

But first, I will cover why this study is so important.

High blood pressure is called a “silent killer”. For most of us our blood pressure creeps up year after year, decade after decade. Factors like inactivity, obesity, smoking, poor diet, and excess alcohol consumption speed the increase.

Unfortunately, the symptoms of high blood pressure – things like headaches, anxiety, fatigue, and blurred vision – are easy to ignore or confuse with other health problems. And if these symptoms are ignored long enough, the result can be sudden death due to a stroke or heart attack.

Alternately, the consequence could be things like congestive heart failure, kidney failure, vision loss, and memory loss that change your quality of life forever. And once the genie is out of the bottle, it can never be put back again. The damage is permanent.

Omega-3s are often recommended for keeping blood pressure in the normal range. In fact, in 2019 the FDA approved a qualified health claim stating, “Consuming eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) omega-3 fatty acids in food or dietary supplements may reduce the risk of hypertension (high blood pressure) and coronary heart disease.”

But the amount of omega-3s needed to reduce the risk of high blood pressure is uncertain. Previous studies have come up with conflicting results. That is the question the study I will discuss today was designed to answer.

How Was This Study Done?

Clinical StudyThe investigators included 71 studies published between 1987 and 2020 with a total of 4,793 subjects ranging in age from 22 to 86 years in their systematic review and meta-analysis. The studies were all randomized, placebo-controlled trials looking at the effectiveness of omega-3 intake (primarily in the form of food or supplements containing both EPA and DHA) at lowering blood pressure. The placebo used in these studies was olive oil or other vegetable oils.

The studies included in this meta-analysis:

  • Included omega-3 intake from both diet (mackerel, salmon, trout, or tuna) and supplements (fish oil, algal oil, or purified omega-3 ethyl esters).
  • Were conducted in populations from Europe, North America, Australia and other Pacific islands, and Asia.
  • Included subjects with normal blood pressure as well as those with high blood pressure.
  • Ranged in length from 5 to 52 weeks (the average was 10 weeks).
  • Included approximately equal numbers of men and women.

The meta-analysis excluded studies that:

  • Lacked a placebo.
  • Lasted less than 4 weeks.
  • Included blood pressure medications.
  • Included individuals with preexisting cardiovascular events.

The data from these trials was analyzed by a statistical method called a 1-stage cubic spline regression model. This is a recently developed statistical method which the investigators stated was superior to the statistical methods used in previous studies because it reduces the likelihood the results are influenced by investigator bias.

How Much Omega-3s Are Best For Blood Pressure?

Fish Oil and Blood PressureWhen the investigators combined the data from all 71 studies:

  • The maximum reduction in both systolic and diastolic blood pressure was observed between 2g/d and 3 g/d.
  • The dose response was non-linear. Doses above 3 g/d offered no additional benefit.

When the investigators looked at subgroups within the studies:

  • Reduction in blood pressure was seen in both subjects with normal blood pressure and those with high blood pressure.
    • However, reduction in blood pressure and the dose response were different in the two groups.
      • In subjects with normal blood pressure the dose response was non-linear with the optimum reduction between 2 and 3 g/d.
      • In subjects with high blood pressure the reduction in blood pressure was greater and the dose response was linear. The authors recommended a dose ≤ 3 g/d EPA + DHA for people with high blood pressure.
  • Subjects with hyperlipidemia had a greater reduction in blood pressure than subjects with normal lipid levels, and the dose-response was linear.
  • Subjects over the age of 45 had a greater reduction in blood pressure than subjects under the age of 45, and the dose response was linear.
  • There were no significant differences between:
    • Diet versus supplementation.
    • Type of omega-3 supplement (natural fish oil versus purified ethyl ester).
    • Sex.

The authors concluded, “This dose-response meta-analysis demonstrates that the optimal combined intake of omega-3 fatty acids for blood pressure lowering is likely between 2 g/d and 3 g/d. Doses of omega-3 fatty acid intake above the recommended 3 g/d may be associated with additional benefits in lowering blood pressure among groups at high risk of cardiovascular disease.”

I should probably explain the reasoning behind this conclusion.

  • 79% of the studies included in this meta-analysis were performed with subjects who had normal blood pressure. This group had a non-linear reduction in blood pressure with an optimal reduction between 2 and 3 g/d EPA + DHA.
    • Because of its size this group exerted a major influence on the results, which explains why the average results for the entire group showed a non-linear reduction in blood pressure with an optimal reduction between 2 and 3 g/d EPA + DHA.
    • Subjects with normal blood pressure and normal lipid levels are at low risk of cardiovascular disease. The high-risk groups (high blood pressure, high cholesterol and/or triglyceride levels, and over 45) all had a linear dose response suggesting that doses above 3 g/d EPA + DHA may be optimal.

The authors also said, “We found associations [between omega-3 intake and blood pressure] among both hypertensive (high blood pressure) and nonhypertensive (normal blood pressure) groups, suggesting that omega-3 fatty acids could be beneficial for controlling blood pressure even before the onset of hypertension.

This means that the intake of omega3 fatty acids could have implications on a person’s future risk of stroke, ischemic heart disease, and all-cause mortality.”

In other words, they are saying their data suggests that EPA + DHA intakes in the 2-3 g/d range may prevent high blood pressure and the effects it can have on our health.

What Does This Study Mean For You?

Question MarkThe authors of this study claim their data support a dose of 2-3 mg/d of EPA + DHA to prevent a future increase in blood pressure and all its associated health consequences. They also say that an EPA+ DHA dose ≥ 3g/d may be optimal for people who already have high blood pressure and/or other risk factors for heart disease.

I am not an expert on statistics, so I cannot evaluate the author’s claim that their statistical method was superior to the methods used in earlier studies that gave conflicting results.

However, their results are consistent with recommendations of several major health and government agencies.

  • For example, the European Food Safety Authority has said, “An intake of EPA and DHA of ~3 g/d is required to bring out the claimed hypotensive (blood pressure lowering) effect”.
  • The FDA has approved qualified health claims stating that consuming EPA and DHA in foods or dietary supplements may reduce the risk of hypertension (high blood pressure) and coronary heart disease but did not recommend a dose to achieve these results.
  • The American Heart Association has recommended ~ 1 g/d of EPA + DHA for patients with documented coronary heart disease and 2–4 g/day of EPA + DHA to lower triglycerides.
  • And the American Heart Association features this article on their website with the headline, “Consuming about 3 grams of omega-3 fatty acids a day may lower blood pressure.”

When we contrast that with the fact that the average American gets less than 100 mg/d of EPA + DHA from their diet it is obvious that many Americans would likely benefit from increasing the amount of EPA and DHA in their diet.

The Rest Of The Story

ProfessorThere are four additional points I would like to make:

  • In trying to explain the differences between dose response in high and low risk subjects, the authors said, “There could be mechanistic differences in bioavailability and efficacy of omega-3 fatty acid intake in these populations.”

In last week’s “Health Tips From the Professor” article I reviewed a study that measured individual differences in the utilization of EPA and DHA and concluded that a blood measurement called Omega-3 Index was a more reliable indicator of health outcomes than the dose of omega-3s consumed.

For that reason, I recommend personalizing your dose of EPA + DHA to reach an Omega-3 Index of 8%, which appears to be optimal for heart health and provides significant blood pressure reduction. This is an iterative process which will require frequent measurement of your omega-3 index and adjustment of EPA + DHA dose until you find the level of EPA + DHA supplementation you need to achieve an Omega-3 Index of 8%.

  • This study and similar studies measure the health benefits of the long chain omega-3 fatty acids EPA and DHA. Short chain omega-3s from nuts, seeds, and plant oils are healthy, but their conversion to EPA and DHA is very inefficient.
  • Both the FDA and American Heart Association recommend that doses of EPA + DHA above 3 g/d should be taken under a physician’s supervision because high doses can cause bleeding problems.

This is another reason for basing your intake of EPA + DHA on Omega-3 Index rather than on the dose recommended by a clinical study. Based on dozens of clinical studies, an Omega-3 Index of 8% appears to be safe unless you have a bleeding disorder or are on a blood-thinning medication (see below).

  • If you are on a medication to thin your blood, you should consult with your physician before increasing or decreasing your omega-3 intake because changes in dietary omega-3s can affect the optimal dose of medication they prescribe.

The Bottom Line 

A recent study looked at the dose of EPA + DHA needed to lower blood pressure.

  • The study concluded that a dose of 2-3 mg/d of EPA + DHA was optimal for preventing a future increase in blood pressure and all its associated health consequences.
  • It also concluded that an EPA+ DHA dose ≥ 3g/d was optimal for lowering blood pressure in people who already have high blood pressure and/or other risk factors for heart disease.
  • Based on previous studies, I recommend optimizing your omega-3 index rather than relying on a dose of EPA + DHA that may not be right for you.

For more details about this study and what it means to you read the article above.

These statements have not been evaluated by the Food and Drug Administration. This information is not intended to diagnose, treat, cure, or prevent any disease.

 ______________________________________________________________________________

My posts and “Health Tips From the Professor” articles carefully avoid claims about any brand of supplement or manufacturer of supplements. However, I am often asked by representatives of supplement companies if they can share them with their customers.

My answer is, “Yes, as long as you share only the article without any additions or alterations. In particular, you should avoid adding any mention of your company or your company’s products. If you were to do that, you could be making what the FTC and FDA consider a “misleading health claim” that could result in legal action against you and the company you represent.

For more detail about FTC regulations for health claims, see this link.

https://www.ftc.gov/business-guidance/resources/health-products-compliance-guidance 

About The Author 

Dr. Chaney has a BS in Chemistry from Duke University and a PhD in Biochemistry from UCLA. He is Professor Emeritus from the University of North Carolina where he taught biochemistry and nutrition to medical and dental students for 40 years.  Dr. Chaney won numerous teaching awards at UNC, including the Academy of Educators “Excellence in Teaching Lifetime Achievement Award”. Dr Chaney also ran an active cancer research program at UNC and published over 100 scientific articles and reviews in peer-reviewed scientific journals. In addition, he authored two chapters on nutrition in one of the leading biochemistry text books for medical students.

Since retiring from the University of North Carolina, he has been writing a weekly health blog called “Health Tips From the Professor”. He has also written two best-selling books, “Slaying the Food Myths” and “Slaying the Supplement Myths”. And most recently he has created an online lifestyle change course, “Create Your Personal Health Zone”. For more information visit https://chaneyhealth.com.

For the past 45 years Dr. Chaney and his wife Suzanne have been helping people improve their health holistically through a combination of good diet, exercise, weight control and appropriate supplementation.

Do Omega-3s Improve Recovery From A Heart Attack?

Where Do We Go From Here? 

Author: Dr. Stephen Chaney 

Omega-3s And Heart DiseaseDespite years of controversy, the benefits of omega-3s remain an active area of research. Over the next few weeks, I will review several groundbreaking omega-3 studies. This week I will focus on omega-3s and heart health.

I don’t need to tell you that the effect of omega-3s on heart health is controversial. One month a new study is published showing an amazing health benefit from omega-3 supplementation. A month or two later another study comes up empty. It finds no benefit from omega-3 supplementation.

That leads to confusion. On one hand you have websites and blogs claiming that omega-3s are a magic elixir that will cure all your ills. On the other hand, there are the naysayers, including many health professionals, claiming that omega-3 supplements are worthless.

I have discussed the reasons for the conflicting results from omega-3 clinical studies in previous issues of “Health Tips From the Professor”. You can go to https://www.chaneyhealth.com/healthtips/ and put omega-3s in the search box to read some of these articles.

Or if you prefer, I have also put together a digital download I call “The Omega-3 Pendulum” which briefly summarizes all my previous articles. It’s available on my Chaney Health School Teachable website.

Today I will discuss a study (B Bernhard et al, International Journal of Cardiology, 399; 131698, 2024) that asks whether 6 months of high dose omega-3 supplementation following a heart attack reduced the risk of major cardiovascular events over the next 6.6 years.

You might be wondering why the study didn’t just look at the effect of continuous omega-3 supplementation for 6 years following a heart attack. There are two very good reasons for the design of the current study.

1) The investigators wanted to do a double blind, placebo controlled clinical trial, the gold standard for clinical studies. However, that kind of study is impractical for a multi-year clinical trial. It would be prohibitively expensive, and patient compliance would be a big problem for a study that long.

2) The months immediately after a heart attack are critical in determining the long-term recovery of that patient. There is often a period of massive inflammation following a heart attack. And that can lead to further damage to the heart and reclosing of the arteries leading to the heart, both of which increase the risk of future adverse cardiac events.

Previous studies have shown that high dose omega-3s immediately following a heart attack can reduce inflammation and damage to the heart. However, those studies did not determine whether the cardioprotective effect of omega-3 supplementation immediately after a heart attack lead to improved long-term outcomes, something this study was designed to determine.

How Was The Study Done?

clinical studyThe investigators enrolled 358 patients who had suffered a heart attack from three Boston area medical centers between June 2008 and August 2012.

The patient demographics were:

  • Gender = 70% female.
  • Average age = 59
  • Average BMI = 29 (borderline obese).
  • Patients with high blood pressure = 64%
  • Patients with diabetes = 25%.

The patients were divided into two groups. The first group received capsules providing 4 gm/day of EPA, DHA, and other naturally occurring omega-3 fatty acids. The other group received a placebo containing corn oil. This was a double-blind study. Neither the patients nor the investigators knew which patients received the omega-3 fatty acids and which ones received the placebo.

The patients were instructed to take their assigned capsules daily for 6 months. At the beginning of the study, blood samples were withdrawn to determine the percentage of omega-3s in the fatty acid content of their red cell membranes (something called omega-3 index). Patients were also tested for insulin resistance and given a complete cardiovascular workup. This was repeated at the end of the 6-month study.

[Note: Previous studies have shown that an omega-3 index of 4% or lower is associated with high risk of heart disease, and an omega-3 index of 8% or above is associated with a low risk of heart disease.]

At 2-month intervals the patients were contacted by staff using a scripted interview to determine compliance with the protocol and their cardiovascular health. Once the 6 months of omega-3 supplementation was completed, the patients were followed for an additional 6.6 years. They were contacted every 6 months for the first 3 years and yearly between 3 years and 6 years.

The investigators quantified the number of major cardiac events (defined as recurrent heart attacks, the necessity for recurrent coronary artery bypass grafts, hospitalizations for heart failure, and all-cause deaths) for each patient during the 6.6-year follow-up period.

Patients in both groups were treated according to current “standard of care” protocols which consisted of diet and exercise advice and 5-6 drugs to reduce future cardiovascular events.

Do Omega-3s Improve Recovery From A Heart Attack?

heart attacksWhen the investigators looked at the incidence of adverse cardiac events during the 6.6-year follow-up period, there were three significant findings from this study.

1) There were no adverse effects during the 6-month supplementation period with 4 gm/day of omega-3s. This is significant because a previous study with 4 gm/day of high purity EPA had reported some adverse effects which had led some critics to warn that omega-3 supplementation was dangerous. More study is needed, but my hypothesis is that this study did not have side effects because it used a mixture of all naturally occurring omega-3s rather than high purity EPA only. 

However, this could also have been because of the way patients were screened before entering this study. I will discuss this in more detail below.

2) When the investigators simply compared the omega-3 group with the placebo group there was no difference in cardiovascular outcomes between the two groups. This may have been because this study faced significant “headwinds” that made it difficult show any benefit from supplementation. I call them “headwinds” rather than design flaws because they were unavoidable. 

    • It would be unethical to deny the standard of care to any patient who has just had a heart attack. That means that every patient in a study like this will be on multiple drugs that duplicate the beneficial effects of omega-3 fatty acids – including lowering blood pressure, lowering triglycerides, reducing inflammation, and reducing plaque buildup and blood clot formation in the coronary arteries.

That means that this study, and studies like it, cannot determine whether omega-3 fatty acids improve recovery from a heart attack. They can only ask whether omega-3 fatty acids have any additional benefit for patients on multiple drugs that duplicate many of the effects of omega-3 fatty acids. That significantly reduces the risk of a positive outcome.

    • As I mentioned above, it would have been impractical to continue providing omega-3 supplements and placebos during the 6.6-year follow-up.

And the study was blinded, meaning that the investigators did not know which patients got the omega-3s and which patients got the placebo. That meant the investigators could not advise the omega-3 supplement users to continue omega-3 supplementation during the follow-up period.

Consequently, the study could only ask if 6 months of high-dose omega-3 supplementation had a measurable benefit 6.6 years later. I, for one, would be more interested in knowing whether lower dose omega-3 supplementation continued for the duration of this study reduced the risk of major coronary events.good news

3) When the investigators compared patients who achieved a significant increase in their omega-3 index during the 6-month supplementation period with those who didn’t, they found a significant benefit of omega-3 supplementation.

This was perhaps the most significant finding from this study.  

If the investigators had stopped by simply comparing omega-3 users to the placebo, this would have been just another negative study. We would be wondering why it did not show any benefit of omega-3 fatty acid supplementation.

However, these investigators were experts on the omega-3 index. They knew that there was considerable individual variability in the efficiency of omega-3 uptake and incorporation into cell membranes. In short, they knew that not everyone taking a particular dose of omega-3s will achieve the same omega-3 index.

And that is exactly what they saw in this study. All the patients in the 6-month omega-3 group experienced an increase in omega-3 index, but there was considerable variability in how much the omega-3 index increased over 6 months.

So, the investigators divided the omega-3 group into two subgroups – ones whose omega-3 index increased by ≥ 5 percentage points (sufficient to move those patients from high risk of heart disease to low risk) and ones whose omega-3 index increased by less than 5 percentage points.

When the investigators compared patients with ≥ 5% increase in omega-3 index to those with <5% increase in omega-3 index:

  • Those with an increase in omega-3 index of ≥ 5% had a 2.9% annual risk of suffering major adverse cardiac events compared to a 7.1% annual risk for those with an increase of <5%.
  • That’s a risk reduction of almost 60%, and it was highly significant.

The authors concluded, “In a long-term follow-up study, treatment with [high dose] omega-3s for 6 months following a heart attack did not reduce adverse cardiac events compared to placebo. However, those patients who were treated with omega-3s and achieved ≥ 5% rise in omega-3 index experienced a significant reduction of adverse cardiac events after a median follow-up period of 6.6 years…Additional studies are needed to confirm this association and may help identify who may benefit from omega-3 fatty acid treatment following a heart attack.”

What Does This Study Mean For You? 

Questioning WomanI should start by saying that I do not recommend 4 gm/day of omega-3 fatty acids following a heart attack without checking with your doctor first.

  • If you are on a blood thinning medication, the dose of either the medication or the omega-3 supplement may need to be reduced to prevent complications due to excess bleeding.
  • In addition, the investigators excluded patients from this study who might suffer adverse effects from omega-3 supplementation. This is a judgement only your doctor can make.

With that advice out of the way, the most important takeaway from this study is that uptake and utilization of omega-3 fatty acids varies from individual to individual.

The omega-3 index is a measure of how well any individual absorbs and utilizes dietary omega-3s. And this study shows that the omega-3 index is a much better predictor of heart health outcomes than the amount of omega-3 fatty acids a person consumes.

This is not surprising because multiple studies have shown that the omega-3 index correlates with heart health outcomes. It may also explain why many studies based on omega-3 intake only have failed to show a benefit of omega-3 supplementation.

Vitamin D supplementation is a similar story. There is also considerable variability in the uptake of vitamin D and conversion to its active form in the body. 25-hydroxy vitamin D levels in the blood are a marker for active vitamin D. For that reason, I have long recommended that you get your 25-hydroxy vitamin D level tested with your annual physical and, with your doctor’s help, base the dose of the vitamin D supplement you use on that test.

This study suggests that we may also want to request an omega-3 index test and use it to determine the amount of supplemental omega-3s we add to our diet.

Where Do We Go From Here?

Where Do We Go From HereThe idea that we need to use the omega-3 index to determine the effectiveness of the omega-3 supplement we use is novel. As the authors suggest, we need more studies to confirm this effect. There are already many studies showing a correlation of omega-3 index with heart health outcomes. But we need more double blind, placebo-controlled studies like this one.

More importantly, we need to understand what determines the efficiency of supplemental fatty acid utilization so we can predict and possibly improve omega-3 utilization. The authors suggested that certain genetic variants might affect the efficiency of omega-3 utilization. But the variability of omega-3 utilization could also be affected by:

  • Diet, especially the presence of other fats in the diet.
  • Metabolic differences due to obesity and diseases like diabetes.
  • Gender, ethnicity, and age.
  • Design of the omega-3 supplement.

We need much more research in these areas, so we can personalize and optimize omega-3 supplementation on an individual basis.

The Bottom Line 

A recent study asked whether high dose omega-3 supplementation for 6 months following a heart attack reduced major cardiac events during the next 6.6 years.

  • When they simply compared omega-3 supplementation with the placebo there was no effect of omega-3 supplementation on cardiac outcomes.
  • However, when they based their comparison on the omega-3 index (a measure of how efficiently the omega-3s were absorbed and incorporated into cell membranes), the group with the highest omega-3 index experienced a 60% reduction in adverse cardiac events over the next 6.6 years.

This is consistent with multiple studies showing that the omega-3 index correlates with heart health outcomes.

More importantly, this study shows there is significant individual variation in the efficiency of omega-3 absorption and utilization. It also suggests that recommendations for omega-3 supplementation should be based on the omega-3 index achieved rather than the dose or form of the omega-3 supplement.

For more information on this study and what it means for you read the article above.

These statements have not been evaluated by the Food and Drug Administration. This information is not intended to diagnose, treat, cure or prevent any disease.

 ______________________________________________________________________________

My posts and “Health Tips From the Professor” articles carefully avoid claims about any brand of supplement or manufacturer of supplements. However, I am often asked by representatives of supplement companies if they can share them with their customers.

My answer is, “Yes, as long as you share only the article without any additions or alterations. In particular, you should avoid adding any mention of your company or your company’s products. If you were to do that, you could be making what the FTC and FDA consider a “misleading health claim” that could result in legal action against you and the company you represent.

For more detail about FTC regulations for health claims, see this link.

https://www.ftc.gov/business-guidance/resources/health-products-compliance-guidance

_______________________________________________________________________

About The Author 

Dr. Chaney has a BS in Chemistry from Duke University and a PhD in Biochemistry from UCLA. He is Professor Emeritus from the University of North Carolina where he taught biochemistry and nutrition to medical and dental students for 40 years.  Dr. Chaney won numerous teaching awards at UNC, including the Academy of Educators “Excellence in Teaching Lifetime Achievement Award”.

Dr Chaney also ran an active cancer research program at UNC and published over 100 scientific articles and reviews in peer-reviewed scientific journals. In addition, he authored two chapters on nutrition in one of the leading biochemistry text books for medical students.

Since retiring from the University of North Carolina, he has been writing a weekly health blog called “Health Tips From the Professor”. He has also written two best-selling books, “Slaying the Food Myths” and “Slaying the Supplement Myths”. And most recently he has created an online lifestyle change course, “Create Your Personal Health Zone”. For more information visit https://chaneyhealth.com.

For the past 45 years Dr. Chaney and his wife Suzanne have been helping people improve their health holistically through a combination of good diet, exercise, weight control and appropriate supplementation.

How Much Protein Do Post-Menopausal Women Need?

Does The Design Of The Protein Supplement Matter? 

Author: Dr. Stephen Chaney 

Frail ElderlyYou’ve probably heard the saying, “It’s all downhill after 30”. That’s a particularly gloomy way of looking at it, but Father Time does take a toll on our body. I’m going to focus on age-related loss of muscle mass today, a physiological process called sarcopenia.

There are three factors that influence the rate at which we lose muscle mass as we age:

1) Our physiology changes. Our bodies break down our protein stores more rapidly and we have a harder time utilizing the protein in our diet to replenish those protein stores.

2) We become less active. In some cases, this reflects physical disabilities, but all too often it is because we are not giving weight-bearing exercises the proper priority in our busy lives.

3) Our diets become inadequate. The major driver of this phenomenon is loss of appetite which results in decreased caloric intake. However, physical disability, isolation, and insufficient income also contribute.

Sarcopenia in turn results in:

  • Loss of muscle strength. Even the simple act of picking up a grandchild or a bag of groceries can become problematic.
  • Increased risk of falls and fractures.
  • Lower quality of life.

Obviously, sarcopenia is a major health issue for those of us in our golden years. If you are younger, it is a concern for your parents or grandparents. Sarcopenia is a health issue that affects everyone.

But what can be done to prevent sarcopenia? We can’t change our physiology, but we can change our activity level and our diet. Weight-bearing exercise tugs on our muscle fibers. That stimulates those fibers to incorporate protein into new muscle cells. It is no wonder that weight-bearing exercise is recommended for preventing sarcopenia.

What about diet? Are older adults getting enough protein in their diet to benefit from weight-bearing exercise? I have shared studies showing that older adults need more protein and higher levels of the amino acid leucine to benefit from their workouts.

But those studies were done with men. There have been no studies comparing younger and older women until now.

In this article, I discuss a recent study (CF McKenna et al, Journal of Applied Physiology, Feb 22, 2024 doi.org/10.1152/applphysiol.00886.2023) that asks how much protein is needed to stimulate muscle protein synthesis following a workout in post-menopausal women and compares it to the protein needs of younger women.

How Was The Study Done? 

clinical studyThe investigators enrolled 16 post-menopausal women who were part of a much larger study investigating exercise and nutritional regimens that preserve and/or enhance muscle mass in women.

The women in this study were on average 60 years old with a BMI of 26 (overweight). They had no heart disease, dietary restrictions, and did not take any supplements that could affect protein metabolism.

They were compared to a cohort of pre-menopausal women (average age = 24, BMI = 25 (borderline overweight)) recruited from the same large study. The experimental protocol was the same for the pre-menopausal and post-menopausal cohorts.

The study design was what is called a parallel-group design. Simply put, one leg was exercised using a leg extension machine, while the other leg was rested. The rested leg served as the control for each participant in the study.

Participants were tested ahead of time to determine the “one-repetition maximum” (1RM) weight for complete leg extension for each participant.

On the day of the experiment participants arrived in the laboratory after an overnight fast. One iv line was inserted, and a labeled amino acid was infused into the bloodstream, so the investigators could measure new protein synthesis at any time during the 4-hour experiment. Another iv line was inserted, so the investigators could withdraw blood samples.

At the beginning of the experiment, each participant was given either a whey protein drink (whey protein isolate fortified with vitamins C, B1, B2, B3, folate, B6, and B12 and minerals calcium, magnesium, iron, zinc, and potassium) or water. They then performed a bout of single-leg extensions starting with a warm-up of 2 sets of repetitions at 30% 1RM followed by 3 sets of 12 repetitions at 65% 1RM with 90 seconds of rest provided between sets.

Immediately following exercise, muscle biopsies were collected from both legs (t=0). Muscles biopsies were also collected at 120 and 240 minutes after exercise. Blood samples were collected continually during the experiment.

Muscle tissue was isolated from each biopsy, and something called myofibrillar protein synthesis (protein synthesis in muscle fibers) was determined based on the amount of labeled amino acid incorporated into muscle protein. The amount of protein synthesis due to exercise was determined by subtracting the incorporation of labeled amino acid in muscle fibers in the rested leg from that in the exercised leg.

What Is Leucine? 

leucine protein and exerciseLeucine is an essential amino acid. It is present in all dietary proteins, but it is more abundant in whey and soy protein than in some vegetable proteins.

Leucine is also one of three branched-chain amino acids (valine and isoleucine are the other two). If you are familiar with the weightlifting and body-building world, you will know that branched-chain amino acids are thought to be important for muscle gain. However:

  • It turns out that leucine is the only branched chain amino acid that stimulates muscle protein synthesis (Am J Physiol Endocrinol Metab 291: E381-E387, 2006). And protein is what gives muscles their strength and their bulk.
  • The other branched chain amino acids appear to play a supporting role in the quantities that occur naturally in most proteins. And adding extra valine and isoleucine to a protein supplement appears to reduce the effectiveness of leucine at stimulating muscle gain (Am J Physiol Endocrinol Metab 291: E381-E387, 2006).

What Have Previous Studies Shown? 

weight lifting exerciseWith respect the amount of protein needed to optimize muscle gain after workouts, previous studies have shown that: 

  • The optimal protein intake for maximizing muscle gain post workout is 15-20 gm for young men (Katsanos et al, Am J Clin Nutr 82: 1065-1073, 2005; Moore et al, Am J Clin Nutr, 89: 161-168, 2009) and 20-25 gm for older men (Symons et al, Am J Clin Nutr 86: 451-456, 2007).
  • More protein isn’t necessarily better. The effect of protein intake on post workout muscle gain maxes out at around 25 gm for young men and 30 gm for older men (Symons et al, J Am Diet Assoc 109: 1582-1586, 2009).
  • Whey protein is the best choice for enhancing muscle gain immediately after a workout. Other protein sources (soy, casein, chicken) are better choices for sustaining muscle gain over the next few hours.
  • A previous study by the authors of the present study showed that 15 gm of whey protein was sufficient to stimulate muscle protein synthesis in young women (average age 20). Thus, young women and young men both appear to benefit from 15 gm of protein after a workout.

How Much Protein Do Post-Menopausal Women Need? 

This is a complex study, so let’s just start with the big takeaway from the study:

  • The same whey protein supplement that increased muscle mass in younger women failed to stimulate “cumulative muscle protein synthesis” [net increase in muscle mass] in post-menopausal women. (This was measured by determining net accumulation of labeled amino acids into the muscle fibers of the exercised leg compared to the rested leg.)

With that out of the way, we can focus on some less important findings:

  • There was a short-term (0-2h) transient increase in muscle protein synthesis following exercise with and without the whey protein supplement, but the result was not cumulative. In other words, the transient protein synthesis did not result in an increase in muscle mass.
  • There was a long-term (2-4h) transient increase in muscle protein synthesis following exercise for the group taking the whey protein supplement, but, again, the result was not cumulative. It did not result in a net increase in muscle mass.
  • In the group taking the whey protein supplement there was a transient increase in both insulin and leucine in the blood between 2 and 4 hours. Either or both could have driven the transient increase in protein synthesis observed during that same times.

In the words of the authors, “Ingestion of 15 gm whey protein failed to stimulate [net] myofibrillar (muscle) protein synthesis in post-menopausal women. While resistance exercise with and without feeding stimulate late (2-4 h) and early (0-2h) increases in myofibrillar protein synthesis, further exercise and nutritional manipulations may be necessary to robustly stimulate the skeletal muscle adaptive response to exercise.”

They went on to say that increased exercise intensity and/or increased protein intake may be necessary for post-menopausal women to maintain or increase muscle mass.

What Does This Study Mean For Post-Menopausal Women? 

Questioning WomanI should start by acknowledging that this was a small study, as are most studies in this field of research. In part this reflects the expense of these experiments and the lack of major government support. But it also reflects the difficulty in recruiting subjects for this kind of experiment. They are hooked up to two iv’s for over four hours and have three muscle biopsies removed from each leg during that time. That’s a pretty invasive experimental protocol.

With this limitation in mind, the biggest takeaway from this study is that post-menopausal women need more protein to build muscle mass than younger women. Young women, just like young men, can build muscle mass with as little as 15 gm of protein post-workout.

Unfortunately, this study did not determine how much protein post-menopausal women need to build muscle mass post-workout. And that is a critical question, because women typically have less muscle mass than men when sarcopenia starts to set in. Resistance (weight-bearing) exercise and adequate protein intake are key to preventing the debilitating effects of sarcopenia in post-menopausal women.

In their conclusion, the authors said that “…further exercise and nutritional manipulations may be necessary [to optimize the post-workout gain in muscle mass for post-menopausal women].”

From an exercise standpoint, the authors speculated that higher intensity exercise may be needed to increase muscle mass in post-menopausal women. However, the exercise protocol they used was based on public health recommendations for resistance training for older adults. A more rigorous exercise protocol might not be suitable for many post-menopausal women.

From a nutritional standpoint, they noted that a previous study had shown that 35 gm of protein post-workout was sufficient to build muscle mass in post-menopausal women. However, they considered 35 gm of protein to be a dangerously high intake for a single serving of protein for post-menopausal women. I concur.

In summary, we know that 15 gm of protein post-workout is too little for postmenopausal women, and while 35 gm of protein is sufficient, it is probably too much. Until further studies are performed in post-menopausal women, I would recommend the 20-25 gm of protein shown to support post-workout muscle gain in older men.

But it is not just the amount of protein that is important. The design of the protein supplement also matters.

Does The Design Of The Protein Supplement Matter? 

Protein SupplementWhile the amount of protein in a post-workout supplement is important, the design of the protein supplement also matters. While there are lots of crazy claims on the internet, there are two natural ways to maximize the effect of a protein supplement on muscle mass. Insulin and the amino acid leucine both drive muscle protein synthesis and help maximize post-workout muscle gain.

  • Recent research has shown that 2-3 gm of leucine (2 gm for young men; 3 gm for older men) is sufficient to maximize post workout muscle gain if protein levels are adequate (Am J Physiol Endocrinol Metab 291: E381-E387, 2006). We don’t know the corresponding leucine requirements for women, so we will need to assume they are similar.
    • A 15-gram serving of whey protein isolate only provides 1.4 gm of leucine, far below what is likely to be needed to drive post-workout muscle gain in post-menopausal women.
    • If you are a man over 50 or a post-menopausal woman, you should look for a post-workout protein supplement containing added leucine. And even younger adults will get “more bang for your buck” by choosing protein supplements with added leucine.
  • The insulin response is maximized when the carbohydrate to protein ratio is around 2.5 to 1. The manuscript did not list carbohydrates among the ingredients used in the whey protein supplement used in this study. But if it is like many whey protein supplements nowadays, it probably contained little or no carbohydrate.
    • Although less popular in today’s low carbohydrate world, post-workout supplements with a high carbohydrate to protein ratio are also effective in maximizing post-workout muscle gain.

The Bottom Line 

Sarcopenia (age-related muscle loss) is a major concern for older Americans. Sarcopenia can result in:

  • Loss of muscle strength. Even the simple act of picking up a grandchild or a bag of groceries can become problematic.
  • Increased risk of falls and fractures.
  • Lower quality of life.

Sarcopenia can be prevented by a combination of resistance exercise and adequate amounts of protein following the workout.

We know that older men require more protein than young men in a post-workout supplement designed to help them maximize the muscle gain associated with resistance exercise. But similar experiments had not been performed with women until now.

In the article above I share a study that shows that post-menopausal women need more protein than young women in a post-workout supplement. But the study did not determine how much protein they need.

I also discuss the amount of protein post-menopausal women likely need in a post-workout supplement, and how that protein supplement could be designed to maximize muscle gain and prevent sarcopenia.

For more information on this study and my recommendations read the article above.

These statements have not been evaluated by the Food and Drug Administration. This information is not intended to diagnose, treat, cure or prevent any disease.

______________________________________________________________________________

My posts and “Health Tips From the Professor” articles carefully avoid claims about any brand of supplement or manufacturer of supplements. However, I am often asked by representatives of supplement companies if they can share them with their customers.

My answer is, “Yes, as long as you share only the article without any additions or alterations. In particular, you should avoid adding any mention of your company or your company’s products. If you were to do that, you could be making what the FTC and FDA consider a “misleading health claim” that could result in legal action against you and the company you represent.

For more detail about FTC regulations for health claims, see this link.

https://www.ftc.gov/business-guidance/resources/health-products-compliance-guidance

_______________________________________________________________________

About The Author 

Dr. Chaney has a BS in Chemistry from Duke University and a PhD in Biochemistry from UCLA. He is Professor Emeritus from the University of North Carolina where he taught biochemistry and nutrition to medical and dental students for 40 years.  Dr. Chaney won numerous teaching awards at UNC, including the Academy of Educators “Excellence in Teaching Lifetime Achievement Award”.

Dr Chaney also ran an active cancer research program at UNC and published over 100 scientific articles and reviews in peer-reviewed scientific journals. In addition, he authored two chapters on nutrition in one of the leading biochemistry text books for medical students.

Since retiring from the University of North Carolina, he has been writing a weekly health blog called “Health Tips From the Professor”. He has also written two best-selling books, “Slaying the Food Myths” and “Slaying the Supplement Myths”. And most recently he has created an online lifestyle change course, “Create Your Personal Health Zone”. For more information visit https://chaneyhealth.com.

For the past 45 years Dr. Chaney and his wife Suzanne have been helping people improve their health holistically through a combination of good diet, exercise, weight control and appropriate supplementation.

Are Oats Bad For You?

What Does This Study Mean For You?

Author: Dr. Stephen Chaney 

If you are gluten sensitive like me, grains that have taste, texture, and fiber are few. Oatmeal is one of my favorites. In fact, I start every day with a bowl of oatmeal. So, when I first saw the headlines suggesting that oats might be bad for me because they might be contaminated with a toxic chemical, my first reaction was, “Say it isn’t so”.

Naturally, I did some research on the subject and looked up the study (AM Temkin et al, Journal of Exposure Science & Environmental Epidemiology, published February 15, 2024) behind the headlines.

The study documented the presence of a potentially toxic agricultural chemical called chlormequat found in our food supply and in our urine. If you are like me, you have probably never heard of chlormequat before, so a little explanation is in order.

What Is Clormequat?

Factory FarmChlormequat is an agricultural chemical that is widely used on oat, barley, and wheat crops in Europe and Canada. It is not a pesticide or herbicide. It does not enhance the nutritional value of the grains it is sprayed on.

It is a growth regulator. Its sole role is to decrease the stem height of these crops and prevent them from bending over, so that mechanical harvesting of the crops is more efficient. It is a perfect example of the industrialization of modern agriculture.

No human studies have been done on clormequat, but animal studies suggest it may affect fertility, harm the reproductive system, and lead to altered fetal growth and development.

The US Environmental Protection Agency:

  • First allowed the import of clormequat in oat, wheat, and barley imported into the United States in 2018.
  • Increased the allowable amount of chlormequat on imported oats in 2020.
  • Is currently considering allowing the use of chlormequat on oats, barley, and wheat grown in the United States.

How Was This Study Done?

clinical studyUrine samples were collected from US adults from three geographical regions between 2017 and 2023.

  • 21 urine samples from Charleston, South Carolina in 2017.
  • 25 urine samples from between October 2017 and September 2022 from Maryland Heights, Missouri.
  • 50 urine samples from Florida in 2023.

All the urine samples were analyzed for chlormequat by LC MS/MS.

Food samples (25 conventional and 8 organic oat products and 9 conventional wheat products) were purchased from US grocery stores in the Washington DC area between June 2022 and May 2023 and analyzed for chlormequat levels by the same method.

Are Oats Bad For You? 

Question MarkThe results of the study were surprising.

  • Overall chlormequat was detected in 80 % of the urine samples. Moreover, the trend was concerning. Clormequat was detected in:
    • 69% of the urine samples collected in 2017.
    • 74% of the urine samples collected between 2018 and 2022.
    • 90% of the urine samples collected in 2023.
  • The average level of chlormequat detected in the urine in 2023 was 3 times higher than in previous years.

The authors speculated that the large increase of chlormequat in the urine of US citizens in 2023 represented the time it took for chlormequat-contaminated grains to work their way into the US food supply after the EPA increased the amount of allowable chlormequat in imported grains in 2020.

When the investigators measured chlormequat contamination in foods derived from oats and wheat in 2022 and 2023 they found chlormequat contamination in:

  • 92% (23 out of 25) conventional oat-based products. This included popular brands such as Quaker Oatmeal and Cheerios.
  • 5% (1 out of 8) organic oat-based products.
  • 22% (2 of 9) conventional wheat-based products. The level of chlormequat contamination was also around 10-fold lower in wheat-based products than in oat-based products.

The authors concluded. “This study reports the detection of chlormequat, an agricultural chemical with developmental and reproductive toxicity, in the U.S. population and the U.S. food supplies for the first time…This work highlights the need for more expansive monitoring of chlormequat in U.S. foods and in human specimens, as well as toxicological and epidemiological study on chlormequat, as this chemical is an emerging contaminant with documented low-dose adverse health effects in animal studies.”

What Does This Study Mean For You?

It would be easy to dismiss this study, and the headlines that go with it, as alarmist.

  • The toxic effects of chlormequat on the reproductive system have only been seen in a handful of animal studies. There are no human studies correlating levels of chlormequat in the body with reproductive issues or other health outcomes.
  • The chlormequat levels seen in urine in this study were far below the minimum thresholds published by the US EPA and the European Food Safety Authority.

However, this is a troubling component of a much larger pattern.

  • Currently, there are over 3,000 chemicals in our food supply that have not been tested for safety by the FDA. Chlormequat is just the latest addition to the list.
  • One recent study identified over 700 potentially toxic chemicals in human blood.
  • Another study found over 200 potentially toxic chemicals in newborn umbilical cord blood.

This is a witch’s brew of chemicals. While most of these chemicals in our blood are far below the minimum levels set by the EPA, nobody has studied how they interact with each other. In short, the danger for each chemical individually may be small, but nobody knows what the cumulative risk is for hundreds of chemicals working together.

So, while we may be able to ignore the current headlines about toxic oats, we should not ignore the larger and growing concern about thousands of untested chemicals in our food supply and hundreds of potentially toxic chemicals in our blood.

My recommendation, of course, is to buy organic whenever possible. For example, my wife purchases our oatmeal at the farmer’s market from a local farmer who grows his oats organically and grinds his own oatmeal.

The Bottom Line

You may have seen recent headlines saying that oats are bad for you, because they might be contaminated with a toxic chemical.

In the article above I review the study behind the headlines and put it into perspective for you.

For more details about the study and what it means for you, read the article above.

These statements have not been evaluated by the Food and Drug Administration. This information is not intended to diagnose, treat, cure, or prevent any disease.

______________________________________________________________________________

My posts and “Health Tips From the Professor” articles carefully avoid claims about any brand of supplement or manufacturer of supplements. However, I am often asked by representatives of supplement companies if they can share them with their customers.

My answer is, “Yes, as long as you share only the article without any additions or alterations. In particular, you should avoid adding any mention of your company or your company’s products. If you were to do that, you could be making what the FTC and FDA consider a “misleading health claim” that could result in legal action against you and the company you represent.

For more detail about FTC regulations for health claims, see this link.

https://www.ftc.gov/business-guidance/resources/health-products-compliance-guidance

_______________________________________________________________________

About The Author 

Dr. Chaney has a BS in Chemistry from Duke University and a PhD in Biochemistry from UCLA. He is Professor Emeritus from the University of North Carolina where he taught biochemistry and nutrition to medical and dental students for 40 years.  Dr. Chaney won numerous teaching awards at UNC, including the Academy of Educators “Excellence in Teaching Lifetime Achievement Award”. Dr Chaney also ran an active cancer research program at UNC and published over 100 scientific articles and reviews in peer-reviewed scientific journals. In addition, he authored two chapters on nutrition in one of the leading biochemistry text books for medical students.

Since retiring from the University of North Carolina, he has been writing a weekly health blog called “Health Tips From the Professor”. He has also written two best-selling books, “Slaying the Food Myths” and “Slaying the Supplement Myths”. And most recently he has created an online lifestyle change course, “Create Your Personal Health Zone”. For more information visit https://chaneyhealth.com.

For the past 45 years Dr. Chaney and his wife Suzanne have been helping people improve their health holistically through a combination of good diet, exercise, weight control and appropriate supplementation.

Health Tips From The Professor