Omega-3 Supplements Are Safe

Why Do Clinical Studies Disagree? 

Author: Dr. Stephen Chaney 

Pendulum
Pendulum

Six weeks ago, the title of my “Health Tips From the Professor” article was, Are Omega-3 Supplements Safe?” That’s because I was reviewing a study that claimed long-term use of omega-3 supplements increased the risk of atrial fibrillation and stroke. And it had led to headlines like, “Omega-3 Supplements May Increase the Risk of Heart Disease” and “Fish Oil Supplements May Increase The Risk of Stroke and Heart Conditions”.

This week, the title of my article is, “Omega-3 Supplements Are Safe”. I did not choose this title to express my opinion, although I am in general agreement with the statement. I chose that title because the omega-3 pendulum has swung again. The article (M Javaid et al, Journal of The American Heart Association, Volume 13, Number 10: e032390, 2024) I am reviewing today came to the conclusion that omega-3 supplements don’t increase the risk of stroke.

I understand your confusion. You are wondering how scientists can tell you one thing today and the total opposite tomorrow. It is conflicting results like this that cause the public to lose faith in science. And when people lose faith in science they are easily influenced by “snake oil” charlatans on the internet.

So, after I describe this study, I will discuss why scientific studies come up with conflicting results and compare these two studies in detail. That is probably the most important part of this article.

How Was This Study Done?

clinical studyScientists from Freeman Hospital and Newcastle University in the UK conducted a meta-analysis combining the data from 120,643 patients enrolled in 11 clinical trials that evaluated the effects of omega-3 supplementation. The inclusion criteria for this meta-analysis were as follows:

  • The studies were randomized trials that compared omega-3 supplements with placebo or standard treatment. Half the patients received the omega-3 supplement.
  • The patients were either previously diagnosed with heart disease or were at high risk of developing heart disease.
  • The studies reported the incidence of bleeding events.

The study asked whether omega-3 supplementation increased the risk of bleeding events (defined as hemorrhagic stroke, intracranial bleeding, or gastrointestinal bleeding) compared to a placebo or standard treatment.

Omega-3 Supplements Are Safe

Omega-3s And Heart DiseaseThe results were reassuring for omega-3 supplement users. When compared to a placebo or standard treatment, omega-3 supplements.

  • Did not increase the risk of overall bleeding events.
  • Did not increase the risk of hemorrhagic stroke, intracranial bleeding, or gastrointestinal bleeding.
  • Did not increase the risk of bleeding in patients who were also taking blood thinners (Blood thinners reduce the ability of blood to clot and can lead to bleeding events. This study found that adding omega-3 supplements to these drugs did not increase bleeding risk.

But here is where it gets interesting. One of the 11 studies included in the meta-analysis used a high dose (4 grams/day) of Vascepa, a highly purified ethyl ester of EPA produced by the pharmaceutical company Amarin. When the authors analyzed the data from this study alone, they found that Vascepa:

  • Increased the relative risk of bleeding by 50% compared to the control group.
    • While this sounds scary, the absolute risk of bleeding was only increased by 0.6% compared to the control group.
    • I will explain the difference between relative risk and absolute risk below. But for now, you can think of absolute risk as a much more accurate estimate of your actual risk.

The authors of the meta-analysis speculated that the increased bleeding risk associated with the use of Vascepa could be due to the:

  • High dose of EPA (4 gm/day) or…
  • Lack of DHA and other naturally occurring omega-3s in the formulation. The authors said:
    • The effect of DHA on the endothelial lining is weaker than that of EPA (EPA makes the endothelial lining “less sticky” which reduces its ability to trigger blood clot formation. This is one of the mechanisms by which EPA is thought to decrease blood clot formation.)
    • The ability of DHA to inhibit oxidation of Apo-B-containing particles was less sustained than that of EPA (Oxidized Apo-B-containing particles increase the risk of blood clot formation. Inhibition of that oxidation by EPA is another of the mechanisms by which EPA is thought to decrease blood clot formation.)

The authors concluded, “Omega-3 PUFAs [polyunsaturated fatty acids] were not associated with increased bleeding risk. Patients receiving high-dose purified EPA [Vascepa] may incur additional bleeding risk, although its clinical significance is very modest.”

What Is The Difference Between Relative And Absolute Risk?

Question MarkRelative risk is best defined as the percentage increase or decrease in risk compared to the risk found in a control group. Absolute risk, on the other hand, is the actual increase or decrease in risk in the group receiving the intervention.

Relative risk is an excellent tool for identifying risks. However, it magnifies the extent of the risk, so it can be misleading. For example,

  • If the absolute risk of some event occurring in the general population was 40%, a 50% increase in relative risk would increase the absolute risk by 20% (40% X 0.5 = 20%) to give a total risk of 60% (40% + 20%). In this case, both the relative and absolute risk are significantly large numbers.
  • However, if the absolute risk in the general population was 1%, a 50% increase in relative risk would only increase the absolute risk to 1.5%, a 0.5% increase in absolute risk. In this case, the increase in relative risk appears significant, but it is misleading because the absolute increase in risk is a modest 0.5%.
  • The latter resembles the situation in this study when the authors compared bleeding events in patients receiving Vascepa to those receiving a placebo. The absolute risk of bleeding events in the control group was 1.2%. The risk of bleeding events in the Vascepa group was 1.8%. That is a 50% increase in relative risk but only a 0.6% increase in absolute risk.

Why Do Clinical Studies Disagree?

Confusion Clinical StudiesAs I have said many times before, there is no perfect clinical study. Every study has its strengths and its flaws. So, it is perhaps instructive to compare this study and the previous study I reviewed 6 weeks ago. Here are some of the questions I ask when evaluating the strengths and weaknesses of clinical studies.

#1: What kind of study is it?

  • The previous study was an association study. It can only report on associations. It cannot determine cause and effect. Outcomes like atrial fibrillation and strokes could have been caused by unrelated variables in the population studied.
  • The current study was a meta-analysis of 11 randomized controlled clinical trials. Because the only difference between the two groups is that one received omega-3 supplements, it can determine cause and effect.

#2: How many people were in the study?

  • Both studies were very large, so this was not a factor.

#3: How long was the study?

  • The previous study lasted 12 years. The clinical trials within this meta-analysis lasted one to five years. This is a slight advantage for the previous study because it might be better able to detect risks of chronic use of omega-3 supplements.

#4: How were participants selected?

  • Participants in the previous study had no previous diagnosis of heart disease while participants in the current study either had a previous diagnosis of heart disease or were at high risk of developing heart disease.

This difference would be relevant if both studies were looking at the benefits of omega-3 supplements. However, the current study was only looking at the side effects of omega-3 supplements, so this is not an important consideration.

Doctor With Patient#5: How was omega-3 intake monitored?

  • This was a significant flaw of the previous study. Use of omega-3 supplements was determined by a questionnaire administered when the subjects entered the study. No effort was made to determine whether the amount of omega-3s consumed remained constant during the 12-year study.
  • The clinical studies within the current meta-analysis were comparing intake of omega-3 supplements to placebo and monitored the use of the omega-3 supplements throughout the study.

#6: What is the dose-response?

  • This was another serious flaw of the previous study. There was no dose-response data.
  • The current study provided limited dose-response data. From the data they presented it appeared that the risk of bleeding events was only slightly dose-dependent except for the clinical study with the high dose (4 gm/day) EPA-only Vascepa drug. It was a clear outlier, which is why they analyzed the data from that study independently from the other studies.

#7: What outcomes were measured?

  • The only common outcome measured in the two studies was hemorrhagic stroke.
  • The previous study reported that omega-3 supplementation increased the risk of stroke by 5% in the general population. However:
    • That result just barely reached statistical significance.
    • It was a 5% increase in relative risk. The authors did not report absolute risk.
    • It was an association study, so it could not determine cause and effect.
  • The current study found omega-3 supplementation had no effect on the risk of stroke in a population that either had heart disease or were at high risk of heart disease.
    • The exception, of course, was the group taking the high dose Vascepa drug (see below).

Heart Disease Study#8: Was the risk clinically significant?

  • As I said above, the previous study only reported relative risk, which can be misleading. However, absolute risk can be calculated from their data. For example,
    • The risk of developing atrial fibrillation in the group taking omega-3 supplements was 4.4% (calculated from Table 2 of the manuscript). The authors said that represented a 13% increase in relative risk compared to the group not taking omega-3 supplements. This means the absolute (actual) increase in risk is about 0.6%.
    • The risk of stroke in the group taking omega-3 supplements was 1.5% (calculated from Table 2 of the manuscript). The authors said that represented a 5% increase in relative risk compared to the group not taking omega-3 supplements. This means the absolute (actual) increase in risk is about 0.08%.
  • In the current study the increased risk of stroke in the group taking the high-dose (4 gm/day) EPA-only Vascepa drug was 50% for relative risk, but only 0.6% for absolute risk.
    • The authors of the current study argued that, based on absolute risk, the risk of stroke for people taking Vascepa was “clinically insignificant”. I would argue the same is true for the results reported in the previous study and the headlines they generated.

#9: Who sponsored the study? 

  • The previous study was supported by the Bill and Melinda Gates Foundation, an organization that has no obvious interest in the outcome of the study.
  • The current study is sponsored by Amarin, the pharmaceutical company that manufactures and markets Vascepa.
    • However, to their credit, the authors made no effort to hide the negative data about Vascepa.
      • In fact, they highlighted the negative data, noted that the increased bleeding risk with Vascepa was different from the omega-3 supplements studied, and offered possible explanations for why a high potency, EPA-only supplement might increase the risk of bleeding more than a lower potency omega-3 supplement containing both EPA and DHA.
    • They did, however, choose to emphasize the 0.6% absolute increase in bleeding risk rather than the 50% relative increase in bleeding risk. However, as I noted above absolute risk is a more accurate way to report risk, especially when the risk in the control group is only 1.2%.

Perspective On This Comparison:

You may be tempted to conclude that the previous study was garbage. Before you do, let me provide some perspective.

  • The data for that study came from the UK Biobank, which is a long-term collection of data by the British government from over 500,000 residents in the United Kingdom. The data are made available to any researcher who wants to study links between genetic and environmental exposure to the development of disease. However, the data were not collected with any particular study in mind.

This is why omega-3 intake was only determined at the beginning of the study and there was no dose-response information included. The experimental design would have been different if the study were specifically designed to measure the influence of omega-3 supplementation on health outcomes. However, because of cost, the sample size would have been much smaller, which would have made it difficult to show any statistically significant results.

  • Relative risk rather than absolute risk is almost universally used to describe the results of clinical studies because it is a larger number and draws more attention. However, as I described above, relative risk can be misleading. In my opinion, both relative and absolute risk should be listed in every publication.

What Does This Study Mean For You?

ConfusionScientists know that every study has their flaws, so we don’t base our recommendations on one or two studies. Instead, we look at the totality of data before making recommendations. When looking at the totality of data two things stand out.

  • The bleeding risk with Vascepa is not unique. There are some studies suggesting that high dose (3-4 gm/day) omega-3 supplements containing both EPA and DHA may increase bleeding risk, although probably not to the same extent as Vascepa.
  • An optimal Omega-3 Index of 8% is associated with a decreased risk of heart disease and does not appear to increase the risk of atrial fibrillation or bleeding events such as hemorrhagic stroke. And for most people, an 8% Omega-3 Index can be achieved with only 1-2 gm/day of omega-3s.

So, my recommendations are the same as they were 6 weeks ago.

  • Be aware that high-dose (3-4 gm/day) of omega-3 supplements may cause an increased risk of atrial fibrillation and stroke, but the risk is extremely small.
  • Omega-3 supplementation in the 1-2 gm/day range appears to be both safe and effective.
  • I recommend getting your Omega-3 Index determined, and if it is low, increasing your omega-3 intake to get it into the 8% range.

The Bottom Line

A recent meta-analysis concluded that omega-3 supplementation does not increase the risk of bleeding events, including hemorrhagic stroke, intracranial bleeding, and gastrointestinal bleeding.

The exception was the high-dose (4 gm/day), EPA-only drug Vascepa, which increases bleeding risk from 1.2% to 1.8%, a 0.6% increase in absolute risk.

This study contradicts a previous study I shared with you only six weeks ago, so I made a detailed comparison of the strengths and weaknesses of each study.

For more details on these studies and what they mean for you, read the article above.

These statements have not been evaluated by the Food and Drug Administration. This information is not intended to diagnose, treat, cure or prevent any disease.

_____________________________________________________________________________

My posts and “Health Tips From the Professor” articles carefully avoid claims about any brand of supplement or manufacturer of supplements. However, I am often asked by representatives of supplement companies if they can share them with their customers.

My answer is, “Yes, as long as you share only the article without any additions or alterations. In particular, you should avoid adding any mention of your company or your company’s products. If you were to do that, you could be making what the FTC and FDA consider a “misleading health claim” that could result in legal action against you and the company you represent.

For more detail about FTC regulations for health claims, see this link.

https://www.ftc.gov/business-guidance/resources/health-products-compliance-guidance

_______________________________________________________________________

About The Author 

Dr. Chaney has a BS in Chemistry from Duke University and a PhD in Biochemistry from UCLA. He is Professor Emeritus from the University of North Carolina where he taught biochemistry and nutrition to medical and dental students for 40 years.

Dr. Chaney won numerous teaching awards at UNC, including the Academy of Educators “Excellence in Teaching Lifetime Achievement Award”.

Dr Chaney also ran an active cancer research program at UNC and published over 100 scientific articles and reviews in peer-reviewed scientific journals. In addition, he authored two chapters on nutrition in one of the leading biochemistry text books for medical students.

Since retiring from the University of North Carolina, he has been writing a weekly health blog called “Health Tips From the Professor”. He has also written two best-selling books, “Slaying the Food Myths” and “Slaying the Supplement Myths”. And most recently he has created an online lifestyle change course, “Create Your Personal Health Zone”. For more information visit https://chaneyhealth.com.

For the past 45 years Dr. Chaney and his wife Suzanne have been helping people improve their health holistically through a combination of good diet, exercise, weight control and appropriate supplementation.

Which Vitamins Reduce Breast Cancer Risk?

How Can You Reduce Your Risk Of Breast Cancer?

Author: Dr. Stephen Chaney 

Breast cancer is scary. The good news is that treatment has gotten much better. Breast cancer is no longer a death sentence. But most women would prefer to avoid breast cancer surgery, radiation, and/or chemotherapy if they could.

Could something as simple as supplementation reduce your risk of developing breast cancer? If so, which vitamins should you be taking? Or, put another way, which vitamins reduce breast cancer risk?

If you ask your doctor, they will tell you, “Supplementation is a waste of money. Vitamins don’t reduce your risk of getting cancer.” And they will be correct! That’s because these are the wrong questions.

Let me explain. These are “one size fits all” questions. Studies to answer these questions start with healthy women and asks if vitamin supplementation reduces breast cancer risk for all of them. The answer to that question is, “No”. Multiple studies have confirmed this.

But the truth is more complicated. We should be asking, “Who benefits from vitamin supplementation”, instead of, “Does everyone benefit from supplementation?”Supplementation Perspective

I have summed up this concept with the Venn diagram on the right. Every woman does not need supplementation. But those with poor diet, increased need, genetic predisposition, and/or certain diseases may benefit from supplementation. That is why we should be asking, “Who needs supplementation?”.

Unfortunately, while this concept of individualized treatment has led to dramatic advances for cancer drug development, it has been virtually ignored for studies on supplementation and breast cancer risk.

The current study (H Song et al., Nutrients, 14: 2644, 2022) is an exception. It asks whether obese women who wish to reduce their risk of breast may benefit more from certain micronutrients than women of normal weight.

How Was This Study Done?

Clinical StudyThe data for this analysis came from the KoGES study. This was a study administered by the Korea Agency for Disease Control and Prevention between 2004 and 2016. It was designed to provide a scientific basis for personalized prevention of chronic diseases in the Korean population.

Of the 211,721 participants enrolled in the original KoGES study, this study included data from 41,593 women who:

  • Underwent a health examination at 38 health examination centers upon enrollment between 2004 and 2013 and a follow up health examination between 2012 and 2016. The average follow-up period was 4.9 years.
  • Were cancer-free when they enrolled in the study and developed breast cancer prior to their follow-up health examination.
  • Had reliable diet data.

Dietary intake was based on a food frequency questionnaire administered during their initial health screening. Dietary intake of 15 micronutrients (calcium, phosphorous, iron, potassium, vitamin A, sodium, vitamin B1, vitamin B2, vitamin B6, niacin, folic acid, vitamin C, vitamin E, zinc, and cholesterol) and 4 macronutrients (energy, protein, fat, and carbohydrate) was determined from the food frequency data and compared to the Korean Dietary Reference Intakes (KDRIs). [Note: The Korean DRIs are slightly different than US standards.]

  • The women were then divided into two groups based on whether they consumed more or less than the Korean DRIs for each nutrient.

Which Vitamins Reduce Breast Cancer Risk?

Vitamin SupplementsThere were two major findings from this study.

1) When the investigators grouped all the women in the study together:

    • none of the 15 micronutrients and 4 macronutrients analyzed in this study influenced breast cancer risk.
    • This confirms most previous studies that have been designed as a “one size fits all” study. So, if your doctor was relying on this kind of study, they were technically correct in saying that vitamin supplements don’t appear to reduce breast cancer risk.

2) But when the investigators separated the women by weight, an interesting dichotomy was observed:

    • For obese women (BMI ≥ 25 kg/m2):
      • Vitamin C intake above the recommended Korean DRI (100 mg/day) reduced the risk of breast cancer by 46%.
      • Vitamin B6 intake above the recommended Korean DRI (1.4 mg/day) reduced the risk of breast cancer by 52%.
    • For women of normal weight (BMI < 25 kg/m2) neither vitamin C nor vitamin B6 had any effect on breast cancer risk.

The authors concluded, “In obese women, exceeding the recommended daily intake levels of vitamin C and vitamin B6 was associated with a lower risk of breast cancer. However, other micronutrients were not associated with breast cancer risk in these women.” [Note: Supplement use was not included in the diet survey, so above recommended intake of C and B6 was from foods consumed, not from supplements.]

What Does This Study Mean For You?

Questioning WomanThis study is a perfect example of why we should be asking, “Who benefits from vitamin supplementation”, instead of, “Does everyone benefit from supplementation?”

In terms of the Venn diagram I introduced above, some people consider obesity a disease.

But whether you consider obesity a disease or not, it does increase the need for many nutrients. So, it is conceivable that extra vitamins C and B6 might provide benefits in obese women that are not seen in non-obese women.

This is, of course, a ground-breaking study. It is the first study of its kind and deserves to be followed by other studies to confirm this observation. Ideally, these studies would test whether the same effect is seen in other population groups and determine the optimal dose of vitamin C and B6 to reduce breast cancer risk.

However, I am not optimistic that these studies will be done. It is easy to get funding for the “do vitamin supplements benefit everyone?” studies that confirm the existing prejudice against vitamin supplementation.

It is much harder to obtain funding for “who benefits from vitamin supplementation?” studies that challenge the existing paradigm. But these are the kind of studies that are needed most.

How Can You Reduce Your Risk Of Breast Cancer?

As I said, this is the first study of its kind, so you could consider the results as preliminary. However, assuming it might be true:

  • I do not recommend megadoses of vitamins C and B6. The above average intake of C and B6 in this study came from food alone. And we do not have any dose response studies that might define an optimal dose of C and B6.
  • I do recommend balance. Based on this study, multivitamins should provide enough C and B6 to have a meaningful effect on breast cancer risk. And multivitamins are inexpensive and risk-free.

In addition, there are things you can do that are proven to reduce breast cancer risk. Here is what the American Cancer Society recommends:

  • Get to and stay at a healthy weight.
  • Be physically active and avoid time sitting.
  • Follow a healthy eating plan.
  • It is best not to drink alcohol.
  • Think carefully about using hormone replacement therapy.

I provide more detail about each of these recommendations in a recent article in “Health Tips From the Professor”.

The Bottom Line 

Most doctors will tell you that supplementation does not reduce your risk of breast cancer. And that opinion is backed up by multiple published clinical studies.

But the problem is that these studies are all asking the wrong question. They are asking, “Does supplementation reduce the risk of breast cancer for all women?”. A better question would be, “Which women benefit from supplementation?”

A recent study asked both of those questions. They looked at the effect of 15 micronutrients on breast cancer risk.

  1. When the investigators grouped all the women in the study together:
    • None of the 15 micronutrients influenced breast cancer risk.

2) But when the investigators separated the women by weight, an interesting dichotomy was observed:

    • For obese women (BMI ≥ 25 kg/m2):
      • Vitamin C intake above the recommended intake reduced the risk of breast cancer by 46%.
      • Vitamin B6 intake above the recommended intake reduced the risk of breast cancer by 52%.
    • For women of normal weight (BMI < 25 kg/m2) neither vitamin C nor vitamin B6 had any effect on breast cancer risk.

The authors concluded, “In obese women, exceeding the recommended daily intake levels of vitamin C and vitamin B6 was associated with a lower risk of breast cancer. However, other micronutrients were not associated with breast cancer risk in these women.”

For more information on this study, what it means for you, and proven methods for reducing breast cancer risk read the article above.

These statements have not been evaluated by the Food and Drug Administration. This information is not intended to diagnose, treat, cure, or prevent any disease.

____________________________________________________________________________

My posts and “Health Tips From the Professor” articles carefully avoid claims about any brand of supplement or manufacturer of supplements. However, I am often asked by representatives of supplement companies if they can share them with their customers.

My answer is, “Yes, as long as you share only the article without any additions or alterations. In particular, you should avoid adding any mention of your company or your company’s products. If you were to do that, you could be making what the FTC and FDA consider a “misleading health claim” that could result in legal action against you and the company you represent.

For more detail about FTC regulations for health claims, see this link.

https://www.ftc.gov/business-guidance/resources/health-products-compliance-guidance

 

What Role Should DNA Testing Play In Nutritional Recommendations?

The Promise And Problems Of Nutrigenomics

Author: Dr. Stephen Chaney 

nutrigenomicsWhen the human genome was sequenced in 2003, many of us in the scientific community thought we were on the verge of a revolution in human health and longevity. We would soon be able to tell individuals their risk of developing various diseases.

Even better, we would be able to tell them the kind of diet and supplementation they needed to avoid those diseases. We would be able to personalize our nutritional recommendation for every individual based on their genome – something called nutrigenomics.

How naive we were! It has turned out to be much more complicated to design personalized nutrition recommendations based on someone’s genome than we ever imagined.

What Is Nutrigenomics?

professor owlAs a Professor at the University of North Carolina I specialized in cancer drug development for over 30 years. Over the last decade of my career a field called pharmacogenomics became widely accepted in the field of cancer drug development. In simple terms, pharmacogenomics looks at how an individual’s genes influence the effectiveness and side effects of drugs.

Because of pharmacogenomics, drugs today are being approved to target cancers for people whose cancer cells have a particular genetic makeup. These drugs would not have been approved a decades ago because if you test them on cancer in the general population, they have little or no effectiveness. They only work on a subset of people who have a form of cancer with a specific genetic makeup.

In principle, nutrigenomics is the same principle. You’ve heard for years that we all have unique nutritional needs. Now we are starting to learn why. It’s because we all have unique variations in our genetic makeup. These genetic mutations increase our risk of certain diseases, and they increase our needs for certain nutrients.

For example, mutations in the MTHFR gene increase the risk of certain birth defects, and supplementation with folic acid is particularly important for reducing birth defects in that population group.

Similarly, mutations in the vitamin D receptor, the VDR gene, interfere with vitamin D absorption from foods and are associated with a condition known as “vitamin D-resistant rickets”. Babies born with this genetic defect require mega doses of vitamin D for normal bone formation.

These are the best-established examples of gene mutations that affect nutritional needs. Many more gene-nutrient interactions have been proposed, but they have not been validated by follow-up experiments.

The situation is similar when we look at gene mutations associated with metabolic responses such as fat and carbohydrate metabolism, obesity, insulin resistance and type 2 diabetes. There are a few gene mutations that have strong associations with obesity and diabetes. Many more gene-metabolism interactions have been proposed, but the data are weak and inconsistent.

The Promise And Problems Of Nutrigenomics

The Promise Of Nutrigenomics.

thumbs upNow that you understand what nutrigenomics is and have some background information about it, let’s look at the promise of nutrigenomics. One promise of nutrigenomics is personalized supplement programs.

We all have different nutritional needs. Wouldn’t it be wonderful if someone could analyze your genome and provide you with a personalized supplement program that precisely fits your genetically determined nutritional requirements?

There are companies that offer such personalized supplement programs. Are they providing you with something of value or is their testing bogus? Are their supplements worthless?

Another promise of nutrigenomics is personalized diet advice. Some people seem to do better on low-fat diets. Other people do better on low-carb diets. Saturated fats and red meats may be more problematic for some individuals than for others. Wouldn’t it be wonderful if someone could analyze your genome and provide you with a personalized diet program – one that allows you to lose weight easily and gain vibrant health.

There are companies that will analyze your genome and tell you whether you are more likely to lose weight and be healthier on a low-fat or low-carbohydrate diet. Is their testing accurate or is it bogus? Are they providing you with useful information, or is their diet advice worthless?

The Problem With Nutrigenomics

thumbs down symbolThe short answer to the questions I posed in the previous section is that personalized supplement and diet programs are on the horizon, but we are not there yet. Companies promising you personalized nutrition programs based only on DNA tests are misleading you. They quote a few studies supporting the tests they run and ignore the many studies showing their tests are worthless.

In case you think that is just my opinion, let me quote from some recent reviews on the current status of nutrigenomics.

For example, a review (C Murgia and MM Adamski, Nutrients, 366, 2017) published in 2017 concluded: “The potential applications to nutrition of this invaluable tool were apparent since the genome was mapped. The first articles discussing nutrigenomics and nutrigenetics were published less than a year after the first draft of the human DNA sequence was made available…However, fifteen years and hundreds of publications later, the gap between the experimental and epidemiologic evidence and health practice is not yet closed.”

“The [complexity] of the genotype information is not the only factor that complicates this translation into practice. The discovery of other levels of control, including epigenetics [modifications of DNA that affect gene expression] and the intestinal microbiome, are other complicating factors. While the science of nutritional genomics continues to demonstrate potential individual responses to nutrition, the complex nature of gene, nutrition and health interactions continues to provide a challenge for healthcare professionals to analyze, interpret and apply to patient recommendations.”

Another review (M Gaussch-Ferre et al, Advances in Nutrition, 9: 128-135, 2018) published in 2018 concluded: “Overall, the scientific evidence supporting the dissemination of genomic information for nutrigenomic purposes remains sparse. Therefore, additional knowledge needs to be generated…”

In short, the experts are saying we still don’t know enough to predict the best diets, or the best supplements based on genetic information alone. Why is that? Why is it so complicated? In part, it can be explained by a term called penetrance. Penetrance simply means that the same gene mutation can have different effects in different people. In some people, its effects may be barely noticeable. In other people its effects may be debilitating.

The Truth About DNA Testing And Personalized Nutrition

The TruthPenetrance is just a word. It’s a concept. The important question is, “What causes differences in genetic penetrance?” Here are the most likely explanations.

1) Human genetics is very complex. There are some gene mutations, such as those causing cystic fibrosis and sickle cell anemia, that can cause a disease by themselves. Most gene mutations, however, simply predispose to a disease or metabolic disturbance and are highly influenced by the activity of other genes. That’s because the products of gene expression form intricate regulatory and metabolic networks. When a single gene is mutated, it interacts with many other genes in the network. And, that network is different for each of us.

2) Many common diseases are polygenic. That includes diseases like heart disease, diabetes, and most cancers. Simply put, that means that they are not caused by a single gene mutation. They are caused by the cumulative effect of many mutations, each of which has a small effect on disease risk. The same appears to be true for mutations that influence carbohydrate and fat metabolism and affect nutrient requirements.

3) The outcome of gene mutations is strongly influenced by our diet, lifestyle, and environment. For example, a common mutation in a gene called FTO predisposes to obesity. However, the effect of this mutation on obesity is strongest when it is coupled with inactivity and foods of high caloric density (translation: junk foods and fast foods instead of fresh fruits and vegetables). Simply put, that means most of us are genetically predisposed to obesity if we follow the American lifestyle, but obesity is not inevitable.

4) Epigenetics has an important influence on gene expression. When I was a graduate student, we believed our genetic destiny was solely determined by our DNA sequence. That was still the prevailing viewpoint when the human genome project was initiated. We thought that once we had our complete DNA sequence, we would know everything we needed to know about our genetic destiny.

How short sighted we were! It turns out that our DNA can be modified in multiple ways. These modifications do not change the DNA sequence, but they can have major effects on gene expression. They can turn genes on or turn them off. More importantly, we have come to learn that these DNA modifications can be influenced by our diet, lifestyle, and exposure to environmental pollutants.

This is the science we call epigenetics. We have gone from believing we have a genome (DNA sequence) that is invariant and controls our genetic destiny to understanding that we also have an “epigenome” (modifications to our DNA) that is strongly influenced by our diet, lifestyle, and environment and can change day-to-day.

microbiome5) Our microbiome has an important influence on our health and nutritional status. Simply put, the term microbiome refers to our intestinal microbes. Our intestinal bacteria are incredibly diverse. Each of us has about 1,000 distinct species of bacteria in our intestines. 

Current evidence suggests these intestinal bacteria influence our immune system, inflammation and auto-immune diseases, brain function and mood, and our predisposition to weight gain – and this may just be the tip of the iceberg.

More importantly, our microbiome is influenced by our diet. For example, vegetarians and meat eaters have entirely different microbiomes. Furthermore, the effect of diet on our microbiome is transitory. If you change your diet, the species of bacteria in your microbiome will completely change in a few weeks.

Finally, our microbiome also influences our nutritional requirements. For example, some species of intestinal bacteria are the major source of biotin and vitamin K2 for all of us and the major source of vitamin B12 for vegans. Intestinal bacteria may also contribute to our supply of folic acid and thiamine. Other intestinal bacteria inactivate and/or remove some vitamins from the intestine for their own use. Thus, the species of bacteria that populate our intestines can influence our nutritional requirements.

Now that you know the complexity of gene interactions you understand why we are not ready to rely on DNA tests yet. We don’t yet know enough to design a simple DNA test to predict our unique nutritional needs. That science is at least 10-20 years in the future. Companies that tell you otherwise are lying to you.

What Role Should DNA Testing Play In Nutritional Recommendations? 

Questioning WomanThe algorithms that are most successful in creating personalized diet and/or supplement recommendations:

1) Start with an analysis of your diet and lifestyle. They powerfully affect both gene expression and your microbiome.

2) Add in health parameters such as blood pressure, LDL cholesterol, HDL cholesterol, triglycerides, and hemoglobin A1c (a measure of blood sugar control). For example, a DNA analysis may suggest you are at risk for having elevated cholesterol, but whether you do or not is influenced by many other factors. A simple blood test indicates whether that risk is real for you.

3) Consider your personal health goals. If nutritional recommendations are to be personalized to you, they should emphasize the health goals you value most.

4) Include any diseases you have and recommendations of your doctor. If your doctor has recommended you lower your blood pressure, your cholesterol, or blood sugar levels, that is valuable information to include in the mix.

5) Now you are ready to include DNA testing in the mix. It can provide some valuable insights, but those insights need to be filtered through the lens of all the critical information collected in the first four steps. Genetics gives you possibilities. The information collected in the first four steps represents your realities.

The Bottom Line 

Nutrigenomics is defined as the interaction between our genetic makeup and our diet. How far have we advanced in the science of nutrigenomics? Can a simple DNA test provide us with useful information?

For example, we all have different nutritional needs. Wouldn’t it be wonderful if someone could analyze your genome and provide you with a personalized supplement program that precisely fits your genetically determined nutritional requirements?

There are companies that will analyze your genome and offer personalized supplement programs. Are they providing you with something of value or is their testing bogus? Are their supplements worthless?

There are companies that will analyze your genome and tell you whether you are more likely to lose weight and be healthier on a low-fat or low-carbohydrate diet. Is their testing accurate or is it bogus? Are they providing you with useful information, or is their diet advice worthless?

Two recent reviews have surveyed the nutrigenomic literature (all published clinical studies) and have concluded that we still don’t know enough to predict the best diets, or the best supplements based on genetic information alone. Why is that? It is because:

1) Human genetics is very complex.

2) Many common diseases are polygenic (caused by the cumulative effect of many mutations).

3) The effect of gene mutations on our health and wellbeing is strongly influenced by our diet, lifestyle, and environment.

4) Epigenetics has an important influence on gene expression.

5) Our microbiome has an important influence on our health and nutritional status.

For more details on these studies and the kind of testing that best determines the right diet and/or supplement program for you, read the article above.

These statements have not been evaluated by the Food and Drug Administration. This information is not intended to diagnose, treat, cure or prevent any disease.

Who Benefits Most From Supplementation?

Supplements Are Part of a Holistic Lifestyle

Author: Dr. Stephen Chaney

need for supplementsThe headlines about supplementation are so confusing. Are they useful, or are they a waste of money? Will they cure you, or will they kill you? I feel your pain.

I have covered these questions in depth in my book, “Slaying The Supplement Myths”, but let me give you a quick overview today. I call it: “Who Benefits Most From Supplementation?” I created the graphic on the left to illustrate why I feel responsible supplementation is an important part of a holistic lifestyle for most Americans. Let me give you specific examples for each of these categories.

 

Examples of Poor Diet

No Fast FoodYou have heard the saying that supplementation fills in the nutritional gaps in our diets, so what are the nutritional gaps? According to the USDA’s 2020-2025 Dietary Guidelines for Americans, many Americans are consuming too much fast and convenience foods. Consequently, we are getting inadequate amounts of calcium, magnesium, and vitamins A, D, E and C. Iron is considered a nutrient of concern for young children and pregnant women. In addition, folic acid, vitamin B6, and iodine are nutrients of concern for adolescent girls and pregnant women.

According to a recent study, regular use of a multivitamin is sufficient to eliminate all these deficiencies except for calcium, magnesium and vitamin D (J.B. Blumberg et al, Nutrients, 9(8): doi: 10.3390/nu9080849, 2017). A well-designed calcium, magnesium and vitamin D supplement may be needed to eliminate those deficiencies.

In addition, intake of omega-3 fatty acids from foods appears to be inadequate in this country. Recent studies have found that American’s blood levels of omega-3s are among the lowest in the world and only half of the recommended level for reducing the risk of heart disease (K.D. Stark et al, Progress In Lipid Research, 63: 132-152, 2016; S.V. Thuppal et al, Nutrients, 9, 930, 2017; M Thompson et al, Nutrients, 11: 177, 2019). Therefore, omega-3 supplementation is often a good idea.

In previous editions of “Health Tips From the Professor” I have talked about our “mighty microbiome”, the bacteria and other microorganisms in our intestine. These intestinal bacteria can affect our tendency to gain weight, our immune system, inflammatory diseases, chronic diseases such as diabetes, cancer, and heart diseases, our mood—the list goes on and on. This is an emerging science. We are learning more every day, but for now it appears our best chances for creating a health-enhancing microbiome are to consume a primarily plant-based diet and take a probiotic supplement.

Finally, diets that eliminate whole food groups create nutritional deficiencies. For example, vegan diets increase the risk of deficiencies in vitamin B12, vitamin D, calcium, iron, zinc and long chain omega-3 fatty acids. A recent study reported that the Paleo diet increased the risk of calcium, magnesium, iodine, thiamin, riboflavin, folate and vitamin D deficiency (A. Genomi et al, Nutrients, 8, 314, 2016). The Keto diet is even more restrictive and is likely to create additional deficiencies.

Examples of Increased Need

pregnant women taking omega-3We have known for years that pregnancy and lactation increase nutritional requirements. In addition, seniors have increased needs for protein, calcium, vitamin D and vitamin B12. In previous issues of “Health Tips From the Professor” I have also shared recent studies showing that protein requirements are increased with exercise.

Common medications also increase our need for specific nutrients. For example, seizure medications can increase your need for vitamin D and calcium. Drugs to treat diabetes and acid reflux can increase your need for vitamin B12. Other drugs increase your need for vitamin B6, folic acid, and vitamin K. Excess alcohol consumption increases your need for thiamin, folic acid, and vitamin B6. These are just a few examples.

Vitamin D is a special case. Many people with apparently adequate intake of vitamin D have low blood levels of 25-hydroxy vitamin D. It is a good idea to have your blood 25-hydroxy vitamin D levels measured on an annual basis and supplement with vitamin D if they are low.

More worrisome is the fact that we live in an increasing polluted world and some of these pollutants may increase our needs for certain nutrients. For example, in a recent edition of “Health Tips From the Professor” I shared a study reporting that exposure to pesticides during pregnancy increases the risk of giving birth to children who will develop autism, and that supplementation with folic acid during pregnancy reduces the effect of pesticides on autism risk. I do wish to acknowledge that this is a developing area of research. This and similar studies require confirmation. It is, however, a reminder that there may be factors beyond our control that have the potential to increase our nutritional needs.

Examples of Genetics Influencing Nutritional Needs

nutrigenomicsThe effect of genetic variation on nutritional needs is known as nutrigenomics. One of the best-known examples of nutrigenomics is genetic variation in the methylenetetrahydrofolate reductase (MTHFR) gene.  MTHFR gene mutations increase the risk of certain birth defects, such as neural tube defects. MTHFR mutations also slightly increase the requirement for folic acid. A combination of food fortification and supplementation with folic acid have substantially decreased the prevalence of neural tube defects in the US population. This is one of the great success stories of nutrigenomics. Parenthetically, there is no evidence that methylfolate is needed to decrease the risk of neural tube defects in women with MTHFR mutations.

Let me give you a couple of additional examples:

One of them has to do with vitamin E and heart disease (A.P. Levy et al, Diabetes Care, 27: 2767, 2004). Like a lot of other studies there was no significant effect of vitamin E on cardiovascular risk in the general population. But there is a genetic variation in the haptoglobin gene that influences cardiovascular risk. The haptoglobin 2-2 genotype increases oxidative damage to the arterial wall, which significantly increases the risk of cardiovascular disease. When the authors of this study looked at the effect of vitamin E in people with this genotype, they found that it significantly decreased heart attacks and cardiovascular deaths.

This has been confirmed by a second study specifically designed to look at vitamin E supplementation in that population group (F. Micheletta et al, Arteriosclerosis, Thrombosis and Vascular Biology, 24: 136, 2008). This is an example of a high-risk group benefiting from supplementation, but in this case the high risk is based on genetic variation.

Let’s look at soy and heart disease as a final example. There was a study called the ISOHEART study (W.L. Hall et al, American Journal of Clinical Nutrition, 82: 1260-1268, 2005 (http://ajcn.nutrition.org/content/82/6/1260.abstract); W.L. Hall et al, American Journal of Clinical Nutrition, 83: 592-600, 2006) that looked at a genetic variation in the estrogen receptor which increases inflammation and decreases levels of HDL. As you might expect, this genotype significantly increases cardiovascular risk.

Soy isoflavones significantly decrease inflammation and increase HDL levels in this population group. But they have no effect on inflammation or HDL levels in people with other genotypes affecting the estrogen reception. So, it turns out that soy has beneficial effects, but only in the population that’s at greatest risk of cardiovascular disease, and that increased risk is based on genetic variation.

These examples are just the “tip of the iceberg”. Nutrigenomics is an emerging science. New examples of genetic variations that affect the need for specific nutrients are being reported on a regular basis. We are not ready to start genotyping people yet. We don’t yet know enough to design a simple genetic test to predict our unique nutritional needs. That science is 10-20 years in the future, but this is something that’s coming down the road.

What the current studies tell us is that some people are high-risk because of their genetic makeup, and these are people for whom supplementation is going to make a significant difference. However, because genetic testing is not yet routine, most people are completely unaware that they might be at increased risk of disease or have increased nutritional requirements because of their genetic makeup.

Examples of Disease Influencing Nutritional Needs

Finally, let’s consider the effect of disease on our nutritional needs. If you look at the popular literature, much has been written about the effect of stress on our nutritional needs. In most case, the authors are referring to psychological stress. In fact, psychological stress has relatively minor effect on our nutritional needs.

Metabolic stress, on the other hand, has major effects on our nutritional needs. Metabolic stress occurs when our body is struggling to overcome disease, recover from surgery, or recover from trauma. When your body is under metabolic stress, it is important to make sure your nutritional status is optimal.

The effects of surgery and trauma on nutritional needs are well documented. In my book, “Slaying The Supplement Myths”, I discussed the effects of disease on nutritional needs in some detail. Let me give you a brief overview here. It is very difficult to show beneficial effects of supplementation in a healthy population (primary prevention). However, when you look at populations that already have a disease, or are at high risk for disease, (secondary prevention), the benefits of supplementation are often evident.

For example, studies suggest that vitamin E, B vitamins, and omega-3s each may reduce heart disease risk, but only in high-risk populations. Similarly, B vitamins (folic acid, B6 and B12) appear to reduce breast cancer risk in high risk populations.

Who Benefits Most From Supplementation?

Question MarkWith this information in mind, let’s return to the question: “Who benefits most from supplementation? Here is my perspective.

1) The need for supplementation is greatest when these circles overlap, as they do for most Americans.

2) The problem is that while most of us are aware that our diets are not what they should be, we are unaware of our increased needs and/or genetic predisposition. We are also often unaware that we are at high risk of disease. For too many Americans the first indication they have heart disease is sudden death, the first indication of high blood pressure is a stroke, or the first indication of cancer is a diagnosis of stage 3 or 4 cancer.

So, let’s step back and view the whole picture. The overlapping circles are drawn that way to make a point. A poor diet doesn’t necessarily mean you have to supplement. However, when a poor diet overlaps with increased need, genetic predisposition, disease, or metabolic stress, supplementation is likely to be beneficial. The more overlapping circles you have, the greater the likely benefit you will derive from supplementation.

That is why I feel supplementation should be included along with diet, exercise, and weight control as part of a holistic approach to better health.

The Bottom Line

In this article I provide a perspective on who benefits most from supplementation and why. There are four reasons to supplement.

  1. Fill Nutritional gaps in our diet

2) Meet increased nutritional needs due to pregnancy, lactation, age, exercise, many common medications, and environmental pollutants.

3) Compensate for genetic variations that affect nutritional needs.

4) Overcome needs imposed by metabolic stress due to trauma, surgery, or disease.

With this information in mind, let’s return to the question: “Who benefits most from supplementation? Here is my perspective.

  1. A poor diet alone doesn’t necessarily mean you have to supplement. However, when a poor diet overlaps with increased need, genetic predisposition, or metabolic stress, supplementation is likely to be beneficial. The more overlap you have, the greater the likely benefit you will derive from supplementation.

2) The problem is that while most of us are aware that our diets are not what they should be, we are unaware of our increased needs and/or genetic predisposition. We are also often unaware that we are at high risk of disease. For too many Americans the first indication they have heart disease is sudden death, the first indication of high blood pressure is a stroke, or the first indication of cancer is a diagnosis of stage 3 or 4 cancer.

For more details, read the article above.

These statements have not been evaluated by the Food and Drug Administration. This information is not intended to diagnose, treat, cure or prevent any disease.

Can Vegans Have Strong Bones?

When Is Supplementation Important? 

Author: Dr. Stephen Chaney

Healthy BoneWhole food, vegan diets are incredibly healthy.

  • They have a low caloric density, which can help you maintain a healthy weight.
  • They are anti-inflammatory, which can help prevent all the “itis” diseases.
  • They are associated with reduced risk of diabetes, heart disease, and some cancers.
  • Plus a recent study has shown that vegans age 60 and older require 58% fewer medications than people consuming non-vegetarian diets.

But vegan diets are incomplete, and as I have said previously, “We have 5 food groups for a reason”. Vegan diets tend to be low in several important nutrients, but for the purposes of this article I will focus on calcium and vitamin D. Vitamin D is a particular problem for vegans because mushrooms are the only plant food that naturally contain vitamin D, and the vitamin D found in mushrooms is in the less potent D2 form.

Calcium and vitamin D are essential for strong bones, so it is not surprising that vegans tend to have less dense bones than non-vegans. But are these differences significant? Are vegans more likely to have broken bones than non-vegans?

That is the question the current study (DL Thorpe et al, American Journal of Clinical Nutrition, 114: 488-495, 2021) was designed to answer. The study also asked whether supplementation with calcium and vitamin D was sufficient to reduce the risk of bone fracture in vegans.

How Was This Study Done?

Clinical StudyThe data for this study were obtained from the Adventist Health Study-2. This is a study of ~96,000 members of the Seventh-day Adventist Church in North America who were recruited into the study between 2002 and 2007 and followed for up to 15 years.

Seventh-day Adventists are a good group for this kind of study because the Adventist church advocates a vegan diet consisting of legumes, whole grains, nuts, fruits, and vegetables. However, it allows personal choice, so a significant number of Adventists choose modifications of the vegan diet and 42% of them eat a nonvegetarian diet.

This diversity allows studies of the Adventist population to not only compare a vegan diet to a nonvegetarian diet, but also to compare it with the various forms of vegetarian diets.

This study was designed to determine whether vegans had a higher risk of hip fractures than non-vegan Adventists. It was performed with a sub-population of the original study group who were over 45 years old at the time of enrollment and who were white, non-Hispanic. The decision to focus on the white non-Hispanic group was made because this is the group with the highest risk of hip fractures after age 45.

At enrollment into the study all participants completed a comprehensive lifestyle questionnaire which included a detail food frequency questionnaire. Based on the food frequency questionnaire participants were divided into 5 dietary patterns.

  • Vegans (consume only a plant-based diet).
  • Lacto-ovo-vegetarian (include dairy and eggs in their diet).
  • Pesco-vegetarians (include fish as well as dairy and eggs in their diet).
  • Semi-vegetarians (include fish and some non-fish meat (primarily poultry) as well as dairy and eggs in their diet).
  • Non-vegetarians (include all meats, dairy, and eggs in their diet). Their diet included 58% plant protein, which is much higher than the typical American diet, but much less than the 96% plant protein consumed by vegans.

Every two years the participants were mailed follow-up questionnaires that included the question, “Have you had any fractures (broken bones) of the wrist or hip after 2001? Include only those that came from a fall or minor accident.”

Can Vegans Have Strong Bones?

Unhealthy BoneThe results of this study were striking.

  • When men and women were considered together there was an increasing risk of hip fracture with increasing plant-based diet patterns. But the differences were not statistically significant.
  • However, the effect of diet pattern on the risk of hip fractures was strongly influenced by gender.
    • For men there was no association between diet pattern and risk of hip fractures.
    • For women there was an increased risk of hip fractures across the diet continuum from nonvegetarians to vegans, with vegan women having a 55% higher risk of hip fracture than nonvegetarian women.
  • The increased risk of hip fractures in vegan women did not appear to be due to other lifestyle differences between vegan women and nonvegetarian women. For example:
    • Vegan women were almost twice as likely to walk more than 5 miles/week than nonvegetarian women.
    • Vegan women consumed more vitamin C and magnesium, which are also important for strong bones, than nonvegetarian women.
    • Vegan women got the same amount of daily sun exposure as nonvegetarian women.
  • The effect of diet pattern on the risk of hip fractures was also strongly influenced by supplementation with Calcium Supplementcalcium and vitamin D.
    • Vegan women who did not supplement with calcium and vitamin D had a 3-fold higher risk of hip fracture than nonvegetarian women who did not supplement.
    • Vegan women who supplemented with calcium and vitamin D (660 mg/day of calcium and 13.5 mcg/day of vitamin D on average) had no increased risk of hip fracture compared to nonvegetarian women who supplemented with calcium and vitamin D.
  • In interpreting this study there are a few things we should note.
    • The authors attributed the lack of an effect of a vegan diet on hip fracture risk in men to anatomical and hormonal differences that result in higher bone density for males.
    • In addition, because the average age of onset of osteoporosis is 15 years later for men than for women, this study may not have been adequately designed to measure the effect of a vegan diet on hip fracture in men. Ideally, the study should have enrolled participants who were at least 60 or older if it wished to detect an effect of diet on hip fractures in men.
    • Finally, because the study enrolled only white, non-Hispanic women into the study, it does not tell us the effect of a vegan diet on women of other ethnicities. Once again, if there is an effect, it would likely occur at an older age than for white, non-Hispanic women.

The authors concluded, “Without combined supplementation of both vitamin D and calcium, female vegans are at high risk of hip fracture. However, with supplementation the excessive risk associated with vegans disappeared.”

Simply put, vegan diets are very healthy. They reduce the risk of heart disease, high blood pressure, diabetes, some cancers, and inflammatory diseases.

However, the bad news is:

  • Vegan women have a lower intake of both calcium and vitamin D than nonvegetarian women.
  • Vegan women have lower bone density than nonvegetarian women.
  • Vegan women have a higher risk of hip fracture than nonvegetarian women.

The good news is:

  • Supplement with calcium and vitamin D eliminates the increased risk of hip fracture for vegan women compared to nonvegetarian women.

When Is Supplementation Important?

Supplementation PerspectiveMuch of the controversy about supplementation comes from a “one size fits all” mentality. Supplement proponents are constantly proclaiming that everyone needs nutrient “X”. And scientists are constantly proving that everyone doesn’t need nutrient “X”. No wonder you are confused.

I believe in a more holistic approach for determining whether certain supplements are right for you. Dietary insufficiencies, increased need, genetic predisposition, and diseases all affect your need for supplementation, as illustrated in the diagram on your left. I have discussed this approach in more detail in a previous issue (https://www.chaneyhealth.com/healthtips/do-you-need-supplements/) of “Health Tips From the Professor”.

But today I will just focus on dietary insufficiencies.

  • Most Americans consume too much highly processed fast and convenience foods. According to the USDA, we are often getting inadequate amounts of calcium, magnesium, and vitamins A, D, E and C. Iron is also considered a nutrient of concern for young children and pregnant women.
  • According to a recent study, regular use of a multivitamin is sufficient to eliminate most these deficiencies except for calcium, magnesium, and vitamin D. A well-designed calcium, magnesium and vitamin D supplement may be needed to eliminate those deficiencies.
  • In addition, intake of omega-3 fatty acids from foods appears to be inadequate in this country. Recent studies have found that American’s blood levels of omega-3s are among the lowest in the world and only half of the recommended level for reducing the risk of heart disease. Therefore, omega-3 supplementation is often a good idea.

Ironically, “healthy” diets are not much better when it comes to dietary insufficiencies. That is because many of these diets eliminate one or more food groups. And, as I have said previously, we have 5 food groups for a reason.

Take the vegan diet, for example:

  • There is excellent evidence that whole food, vegan diets reduce the risk of heart disease, diabetes, inflammatory diseases, and some cancers. It qualifies as an incredibly healthy diet.
  • However, vegan diets exclude dairy and meats. They are often low in protein, vitamin B12, vitamin D, calcium, iron, zinc, and long chain omega-3 fatty acids. Supplementation with these nutrients is a good idea for people following a vegan diet.
  • The study described above goes one step further. It shows that supplementation with calcium and vitamin D may be essential for reducing the risk of hip fractures in vegan women.

There are other popular diets like Paleo and keto which claim to be healthy even though there are no long-term studies to back up that claim.

  • However, those diets are also incomplete. They exclude fruits, some vegetables, grains, and most plant protein sources.
  • A recent study reported that the Paleo diet increased the risk of calcium, magnesium, iodine, thiamin, riboflavin, folate, and vitamin D deficiency. The keto diet is even more restrictive and is likely to create additional deficiencies.
  • And it is not just nutrient deficiencies that are of concern when you eliminate plant food groups. Plants also provide a variety of phytonutrients that are important for optimal health and fiber that supports the growth of beneficial gut bacteria.

In short, the typical American diet has nutrient insufficiencies. “Healthy” diets that eliminate food groups also create nutrient insufficiencies. Supplementation can fill those gaps.

The Bottom Line

Vegan diets are incredibly healthy, but:

  • They eliminate two food groups – dairy, and meat protein.
  • They have lower calcium and vitamin D intake than nonvegetarians.
  • They also have lower bone density than nonvegetarians.

The study described in this article was designed to determine whether vegans also had a higher risk of bone fractures. It found:

  • Vegan women who don’t supplement have a 3-fold higher risk of hip fracture than nonvegetarian women.
  • The increased risk of hip fractures in vegan women did not appear to be due to other lifestyle differences between vegan women and nonvegetarian women.
  • Supplementation with calcium and vitamin D (660 mg/day of calcium and 13.5 mcg/day of vitamin D on average) eliminated the difference in risk of hip fracture between vegan women and nonvegetarian women.

In the article above I discuss the importance of supplementation in assuring diets are nutritionally complete.

  • In short, the typical American diet has nutrient insufficiencies. “Healthy” diets that eliminate food groups also create nutrient insufficiencies. Supplementation can fill those gaps.

For more details about the study and a discussion of which supplements may be needed to assure nutritionally adequate diets, read the article above.

These statements have not been evaluated by the Food and Drug Administration. This information is not intended to diagnose, treat, cure, or prevent any disease.

Is DNA Testing Valuable?

What Is The True Value Of DNA Tests? 

Author: Dr. Stephen Chaney

Genetic TestingDNA testing is hot! DNA testing companies claim they can tell you your disease risk and personalize your diet and supplement program – all based on the sequence of your DNA.

On the other hand, most reputable medical sources say these DNA testing companies overpromise and underdeliver. They tell you that diet, lifestyle, and supplement recommendations based only on your DNA sequence are often inaccurate.

So, what should you believe? At this point you are probably wondering:

  • Is DNA testing valuable or is it a waste of money?
  • Is there a way to make DNA testing more accurate?
  • What is the true value of DNA testing to you, the consumer?

I will consider these 3 questions in my article below. But first let me share two stories about DNA testing, one true and the other fictional.

Perspectives on DNA Testing

When the human genome was first sequenced in 2003, it took 13 years and cost millions of dollars. That was an nutrigenomicsexciting time. Many of us in the scientific community thought we were on the verge of a revolution in human health and longevity. We would soon be able to tell individuals their risk of developing various diseases.

Even better, we would be able to tell them the kind of diet and supplementation they needed to avoid those diseases. We would be able to personalize our nutritional recommendation for every individual based on their genome – something we called nutrigenomics.

How naive we were! It has turned out to be much more complicated to design personalized nutrition recommendations based on someone’s genome than we ever imagined.

Today an analysis of your genome requires hours and costs less than $200. That represents a tremendous advance in technology. However, we are no closer to being able to make personal nutrition recommendations based on our DNA sequence today than we were 18 years ago.

Why is that? Let me share a fictional story because it provides a clue. In 1997, when I was still a relatively young scientist, I saw a film called GAATACA. [If you are looking for an entertaining film to watch, it is still available on some streaming services.]

This film envisioned a future society in which parents had their sperm and eggs sequenced so that their children would be genetically perfect. In that society the term “love child” had been redefined as a child who had been conceived without prior DNA sequencing.

The hero of this film was, of course, a love child. He was born with a genetic predisposition for heart disease. He was considered inferior, a second-class citizen of this future world.

Without giving away the plot of the film (I don’t want to spoil the enjoyment for you if you are thinking of watching it), he overcame his genetic inferiority. With a strict regimen of diet and physical fitness he became stronger and healthier than many of his genetically perfect peers.

This is when I first began to realize that our DNA does not have to be our destiny. We have the power to overcome bad genetics. We also have the power to undermine good genetics.

You might be wondering, “How can this be? Why doesn’t our DNA determine our destiny” I will answer that question in two parts.

  • First, I will share what experts say about the value of DNA testing.
  • Then I will put on my professor hat and discuss “Genetics 101 – What we didn’t know in 2003” (When the genome was first sequenced).

Is DNA Testing Valuable?

SkepticAs I said above, most scientists are skeptical about the ability of DNA testing to predict our ideal diet and supplementation regimens. For example, here are two recent reviews on the current status of DNA testing. [Note: These scientists are using “science speak”. Don’t worry if you don’t understand all the terms. I will explain their message in simpler terms in the next section.]

One review (C Murgia and MM Adamski, Nutrients, 366, 2017) published in 2017 concluded: “The potential applications to nutrition of this invaluable tool [DNA sequencing] were apparent since the genome was mapped…However, fifteen years and hundreds of publications later, the gap between genome mapping and health practice is not yet closed.”

“The discovery of other levels of control, including epigenetics [modifications of DNA that affect gene expression] and the intestinal microbiome complicate the interpretation of genetic data. While the science of nutritional genomics remains promising, the complex nature of gene, nutrition and health interactions provides a challenge for healthcare professionals to analyze, interpret and apply to patient recommendations.”

Another review (M Gaussch-Ferre et al, Advances in Nutrition, 9: 128-135, 2018) published in 2018 concluded: “Overall, the scientific evidence supporting the dissemination of genomic information for nutrigenomic purposes [predicting ideal diet and supplement regimens] remains sparse. Therefore, additional knowledge needs to be generated…”

In short, the experts are saying we still don’t know enough to predict the best diet or the best supplements based on genetic information alone.

Genetics 101 – What We Didn’t Know In 2003

GeneticistIn simple terms the experts who published those reviews are both saying that the linkage between our DNA sequence and either diet or supplementation is much more complex than we thought in 2003 when the genome was first sequenced.

That is because our understanding of genetics has been transformed by two new areas of research, epigenetics and our microbiome. Let me explain.

  1. Epigenetics has an important influence on gene expression. When I was a graduate student, we believed our genetic destiny was solely determined by our DNA sequence. That was still the prevailing viewpoint when the human genome project was initiated. As I said above, we thought that once we had our complete DNA sequence, we would know everything we needed to know about our genetic destiny.

It turns out that our DNA can be modified in multiple ways. These modifications do not change the DNA sequence, but they can have major effects on gene expression. They can turn genes on or turn them off. More importantly, we have come to learn that these DNA modifications can be influenced by our diet and lifestyle.

This is the science we call epigenetics. We have gone from believing we have a genome (DNA sequence) that is invariant and controls our genetic destiny to understanding that we also have an “epigenome” (modifications to our DNA) that is strongly influenced by our diet and lifestyle and can change day-to-day.

2) Our microbiome also has an important influence on our health and nutritional status. microbiomeSimply put, the term microbiome refers to our intestinal microbes. Our intestinal bacteria are incredibly diverse. Each of us has about 1,000 distinct species of bacteria in our intestines. 

Current evidence suggests these intestinal bacteria influence our immune system, inflammation and auto-immune diseases, brain function and mood, and our predisposition to gain weight – and this may just be the tip of the iceberg.

More importantly, our microbiome is also influenced by our diet and lifestyle, and environment. For example, vegetarians and meat eaters have entirely different microbiomes.

Furthermore, the effect of diet and lifestyle on our microbiome also changes day to day. If you change your diet, the species of bacteria in your microbiome will completely change in a few days.

If you are wondering how that could be, let me [over]simplify it for you:

    • What we call fiber, our gut bacteria call food.
    • Different gut bacteria thrive on different kinds of fiber.
    • Different plant foods provide different kinds of fiber.
    • Whenever we change the amount or type of fiber in our diet, some gut bacteria will thrive, and others will starve.
    • Bacteria grow and die very rapidly. Thus, the species of bacteria that thrive on a particular diet quickly become the predominant species in our gut.
    • And when we change our diet, those gut bacteria will die off and other species will predominate.

Finally, our microbiome also influences our nutritional requirements. For example, some species of intestinal bacteria are the major source of biotin and vitamin K2 for all of us and the major source of vitamin B12 for vegans. Other intestinal bacteria inactivate and/or remove some vitamins from the intestine for their own use. Thus, the species of bacteria that populate our intestines can influence our nutritional requirements.

Now that you know the complexity of gene interactions you understand why we are not ready to rely on DNA tests alone. That science is at least 10-20 years in the future. Companies that tell you otherwise are lying to you.

What Is The True Value Of DNA Tests? 

The TruthBy now you are probably thinking that my message is that DNA tests are worthless. Actually, my message is a bit different. What I, and most experts, are saying is that DNA tests are of little value by themselves.

To understand the true value of DNA tests, let me start with defining a couple of terms you may vaguely remember from high school biology – genotype and phenotype.

  • Genotype is your genes.
  • Phenotype is you – your health, your weight, and your nutritional needs. Your phenotype is determined by your genes plus your diet and your lifestyle.

With that in mind, let’s review the take-home messages from earlier sections of this article.

  • The take-home message from the two stories in “Perspectives on DNA Testing” is that our DNA does not have to be our destiny. We have the power to overcome bad genetics. We also have the power to undermine good genetics.
  • The take-home message from “Genetics 101” is that while the genes we inherit do not change, the expression of those genes is controlled in part by:
    • Epigenetic modifications to the DNA. And those epigenetic modifications are controlled by our diet and our lifestyle.
    • Our microbiome (gut bacteria). And our microbiome is controlled by our diet and our lifestyle.

Now we are ready to answer the question, “What is the true value of DNA testing?” There are actually two answers to this question. You have probably guessed the first answer by now, but you will be surprised by the second.

  1. DNA testing can only indicate the potential for obesity, the potential for nutritional deficiencies, and the potential for disease. But whether that potential is realized depends on our diet and lifestyle. Therefore, the true value of DNA testing comes from adding a comprehensive analysis of diet and lifestyle to the DNA test results. That includes:
    • Questionnaires that assess diet, lifestyle, health goals, and health concerns.

For example, your genetics may indicate an increased need for vitamin D. This is a concern if your vitamin D intake is marginal but may not be a concern if you are getting plenty of vitamin D from your diet, supplementation, and sun exposure.

    • Direct measurements of obesity such as height and weight (from which BMI can be calculated) and waist circumference (belly fat is more dangerous to our health than fat stored elsewhere in our body).

For example, most Americans have a genetic predisposition to obesity, but not everyone is obese. If you are overweight or obese, your nutrition and lifestyle recommendations should include approaches to reduce your weight. If not, these recommendations are not needed, even if you have a genetic predisposition to obesity.

    • Blood pressure and blood markers of disease risk (cholesterol, triglycerides, and blood sugar).

For example, you may have genetic predisposition to high blood pressure or high cholesterol. If either of these are high, your recommendations should include nutrition and lifestyle approaches to lower them. However, if you are already keeping them under control through diet and lifestyle, no further changes may be necessary.

2) While the scientific community now knows the limitations of DNA testing, this information has not filtered down to the general public. This brings me to the second value of DNA testing. Several recent studies have shown that people are much more likely to follow recommendations based on DNA testing than recommendations based on dietary questionnaires, blood markers of disease, or even recommendations from their physician.

The Bottom Line

DNA testing is hot! DNA testing companies claim they can tell you your disease risk and personalize your diet and supplement program – all based on the sequence of your DNA.

On the other hand, most reputable medical sources say these DNA testing companies overpromise and underdeliver. They tell you that diet, lifestyle, and supplement recommendations based only on your DNA sequence are often inaccurate. They are of little value if they are only based on DNA testing.

So, what is the true value of DNA testing? To answer that question, we need to know two things:

1) Our DNA is not our destiny. We have the power to overcome bad genetics. We also have the power to undermine good genetics.

2) While the genes we inherit do not change, the expression of these genes is controlled in part by:

    • Epigenetic modifications to the DNA. And those epigenetic modifications are controlled by our diet and our lifestyle.
    • Our microbiome (gut bacteria). And our microbiome is controlled by our diet and our lifestyle.

With this information in mind, we are ready to answer the question, “What is the true value of DNA testing?” The true value of DNA testing is tw0-fold:

1) It comes from adding a comprehensive analysis of diet and lifestyle to the DNA test results. This includes:

    • Questionnaires that assess diet, lifestyle, health goals, and health concerns.
    • Direct measurements of obesity such as height and weight (from which BMI can be calculated) and waist circumference (belly fat is more dangerous to our health than fat stored elsewhere in our body).
    • Blood pressure and blood markers of disease risk (cholesterol, triglycerides, and blood sugar).

2) In addition, several recent studies have shown that people are much more likely to follow recommendations based on DNA testing than recommendations based on dietary questionnaires, blood markers of disease, or even recommendations from their physician.

For more details and explanations of the statements in “The Bottom Line”, read the article above.

These statements have not been evaluated by the Food and Drug Administration. This information is not intended to diagnose, treat, cure, or prevent any disease.

Are Vegan Diets Bad For Your Bones?

The Secrets To A Healthy Vegan Diet

Author: Dr. Stephen Chaney

Frail ElderlyOsteoporosis is a debilitating and potentially deadly disease associated with aging. It affects 54 million Americans. It can cause debilitating back pain and bone fractures. 50% of women and 25% of men over 50 will break a bone due to osteoporosis. Hip fractures in the elderly due to osteoporosis are often a death sentence.

As I discussed in a previous issue of “Health Tips From The Professor”, a “bone-healthy lifestyle requires 3 essentials – calcium, vitamin D, and weight bearing exercise. If any of these three essentials is presence in inadequate amounts, you can’t build healthy bones. In addition, other nutrients such as protein, magnesium, zinc, vitamin B12, and omega-3 fatty acids may play supporting roles.

Vegan and other plant-based diets are thought to be very healthy. They decrease the risk of heart disease, diabetes, and some cancers. However, vegan diets tend to be low in calcium, vitamin D, zinc, vitamin B12, protein, and omega-3 fatty acids. Could vegan diets be bad for your bones?

A meta-analysis of 9 studies published in 2009 (LT Ho-Pham et al, American Journal of Clinical Nutrition 90: 943-950, 2009) reported that vegans had 4% lower bone density than omnivores, but concluded this difference was “not likely to be clinically relevant”.

However, that study did not actually compare bone fracture rates in vegans and omnivores. So, investigators have followed up with a much larger meta-analysis (I Iguacel et al, Nutrition Reviews 77, 1-18, 2019) comparing both bone density and bone fracture rates in vegans and omnivores.

How Was This Study Done?

Clinical StudyThe investigators searched the literature for all human clinical studies through November 2017 that compared bone densities and frequency of bone fractures of people consuming vegan and/or vegetarian diets with people consuming an omnivore diet.

  • Vegan diets were defined as excluding all animal foods.
  • Vegetarian diets were defined as excluding meat, poultry, fish, seafood, and flesh from any animal but including dairy foods and/or eggs. [Note: The more common name for this kind of diet is lacto-ovo vegetarian, but I will use the author’s nomenclature in this review.]
  • Omnivore diets were defined as including both plant and animal foods from every food group.

The investigators ended up with 20 studies that had a total of 37,134 participants. Of the 20 studies, 9 were conducted in Asia (Taiwan, Vietnam, India, Korea, and Hong-Kong), 6 in North America (the United States and Canada), and 4 were conducted in Europe (Italy, Finland, Slovakia, and the United Kingdom).

Are Vegan Diets Bad For Your Bones?

Here is what the investigators found:

Unhealthy BoneBone density: The clinical studies included 3 different sites for bone density measurements – the lumbar spine, the femoral neck, and the total body. When they compared bone density of vegans and vegetarians with the bone density of omnivores, here is what they found:

Lumbar spine:

    • Vegans and vegetarians combined had a 3.2% lower bone density than omnivores.
    • The effect of diet was stronger for vegans (7% decrease in bone density) than it was for vegetarians (2.3% decrease in bone density).

Femoral neck:

    • Vegans and vegetarians combined had a 3.7% lower bone density than omnivores.
    • The effect of diet was stronger for vegans (5.5% decrease in bone density) than it was for vegetarians (2.5% decrease in bone density).

Whole body:

    • Vegans and vegetarians combined had a 3.2% lower bone density than omnivores.
    • The effect of diet was statistically significant for vegans (5.9% decrease in bone density) but not for vegetarians (3.5% decrease in bone density). [Note: Statistical significance is not determined by how much bone density is decreased. It is determined by the size of the sample and the variations in bone density among individuals in the sample.]

Bone FractureBone Fractures: The decrease in bone density of vegans in this study was similar to that reported in the 2009 study I discussed above. However, rather than simply speculating about the clinical significance of this decrease in bone density, the authors of this study also measured the frequency of fractures in vegans, vegetarians, and omnivores. Here is what they found.

  • Vegans and vegetarians combined had a 32% higher risk of bone fractures than omnivores.
  • The effect of diet on risk of bone fractures was statistically significant for vegans (44% higher risk of bone fracture) but not for vegetarians (25% higher risk of bone fractures).
  • These data suggest the decreased bone density in vegans is clinically significant.

The authors concluded, “The findings of this study suggest that both vegetarian and vegan diets are associated with lower bone density compared with omnivorous diets. The effect of vegan diets on bone density is more pronounced than the effect of vegetarian diets, and vegans have a higher fracture risk than omnivores. Both vegetarian and vegan diets should be appropriate planned to avoid dietary deficiencies associated with bone health.”

The Secrets To A Healthy Vegan Diet

Emoticon-BadThe answer to this question lies in the last statement in the author’s conclusion, “Both vegetarian and vegan diets should be appropriate planned to avoid dietary deficiencies associated with bone health.” 

The problem also lies in the difference between what a nutrition expert considers a vegan diet and what the average consumer considers a vegan diet. To the average consumer a vegan diet is simply a diet without any animal foods. What could go wrong with that definition? Let me count the ways.

  1. Sugar and white flour are vegan. A vegan expert thinks of a vegan diet as a whole food diet – primarily fruits, vegetables, whole grains, beans, nuts, and seeds. A vegan novice includes all their favorites – sodas, sweets, and highly processed foods. And that may not leave much room for healthier vegan foods.

2) Big Food, Inc is not your friend. Big Food tells you that you don’t need to give up the taste of animal foods just because you are going vegan. They will just combine sugar, white flour, and a witch’s brew of chemicals to give you foods that taste just like your favorite meats and dairy foods. The problem is these are all highly processed foods. They are not healthy. Some people call them “fake meats” or “fake cheeses”. I call them “fake vegan”.

If you are going vegan, embrace your new diet. Bean burgers may not taste like Big Macs, but they are delicious. If need other delicious vegan recipe ideas, I recommend the website https://forksoverknives.com.

3) A bone healthy vegan diet is possible, but it’s not easy. Let’s go back to the author’s phrase “…vegan diets should be appropriate planned to avoid dietary deficiencies associated with bone health.” A vegan expert will do the necessary planning. A vegan novice will assume all they need to do is give up animal foods. 

As I said earlier, vegan diets tend to be low in calcium, vitamin D, zinc, vitamin B12, protein, and omega-3 fatty acids. Let’s look at how a vegan expert might plan their diet to get enough of those bone-healthy nutrients.

    • Calcium. The top plant sources of calcium are leafy greens and soy foods at about 100-250 mg (10-25% of the DV) of calcium per serving. Some beans and seeds are moderately good sources of calcium. Soy foods are a particularly good choice because they are a good source of calcium and contain phytoestrogens that stimulate bone formation.

A vegan expert makes sure they get these foods every day and often adds a calcium supplement.

    • Protein. Soy foods, beans, and some whole grains are the best plant sources of protein.soy

It drives me crazy when a vegan novice tells me they were told they can get all the protein they need from broccoli and leafy greens. That is incredibly bad advice.

A vegan expert makes sure they get soy foods, beans, and protein-rich grains every day and often adds a protein supplement.

    • Zinc. There are several plant foods that supply around 20% the DV for zinc including lentils, oatmeal, wild rice, squash and pumpkin seeds, quinoa, and black beans.

A vegan expert makes sure they get these foods every day and often adds a multivitamin supplement containing zinc.

    • Vitamin D and vitamin B12. These are very difficult to get from a vegan diet. Even vegan experts usually rely on supplements to get enough of these important nutrients.

4) Certain vegan foods can even be bad for your bones. I divide these into healthy vegan foods and unhealthy “vegan” foods. 

    • Healthy vegan foods that can be bad for your bones include.
      • Pinto beans, navy beans, and peas because they contain phytates.
      • Raw spinach & swiss chard because they contain oxalates.
      • Both phytates and oxalates bind calcium and interfere with its absorption.
      • These foods can be part of a healthy vegan diet, but a vegan expert consumes them in moderation.
    • Unhealthy “vegan” foods that are bad for your bones include sodas, salt, sugar, and alcohol.
      • The mechanisms are complex, but these foods all tend to dissolve bone.
      • A vegan expert minimizes them in their diet.

5) You need more than diet for healthy bones. At the beginning of this article, I talked about the 3 Weight Trainingessentials for bone formation – calcium, vitamin D, and exercise. You can have the healthiest vegan diet in the world, but if you aren’t getting enough weight bearing exercise, you will have low bone density. Let me close with 3 quick thoughts:

    • None of the studies included in this meta-analysis measured how much exercise the study participants were getting.
    • The individual studies were generally carried out in industrialized countries where many people get insufficient exercise.
    • The DV for calcium in the United States is 1,000-1,200 mg/day for adults. In more agrarian societies dietary calcium intake is around 500 mg/day, and osteoporosis is almost nonexistent. What is the difference? These are people who are outside (vitamin D) doing heavy manual labor (exercise) in their farms and pastures every day.

In summary, a bone healthy vegan lifestyle isn’t easy, but it is possible if you work at it.

The Bottom Line 

A recent meta-analysis asked two important questions about vegan diets.

  1.     Do vegans have lower bone density than omnivores?

2) Is the difference in bone density clinically significant? Are vegans more likely to suffer from bone fractures?

The study found that:

  • Vegans had 5.5%–7% lower bone density than omnivores depending on where the bone density was measured.
  • Vegans were 44% more likely to suffer from bone fractures than omnivores.

The authors of the study concluded, ““The findings of this study suggest that…vegan diets are associated with lower bone density compared with omnivorous diets, and vegans have a higher fracture risk than omnivores…Vegan diets should be appropriate planned to avoid dietary deficiencies associated with bone health.”

In evaluating the results of this study, I took a detailed look at the pros and cons of vegan diets and concluded, “A bone healthy vegan lifestyle isn’t easy, but it is possible if you work at it.”

For more details about study and my recommendations for a bone healthy vegan lifestyle read the article above.

These statements have not been evaluated by the Food and Drug Administration. This information is not intended to diagnose, treat, cure, or prevent any disease.

Which Diets Are Best In 2021?

Which Diet Should You Choose?

Emoticon-BadMany of you started 2021 with goals of losing weight and/or improving your health. In many cases, that involved choosing a new diet. That was only 2 months ago, but it probably feels like an eternity.

For many of you the “bloom” has gone off the new diet you started so enthusiastically in January.

  • Perhaps the diet isn’t working as well as advertised…
  • Perhaps the diet is too restrictive. You are finding it hard to stick with…
  • Perhaps you are always hungry or constantly fighting food cravings…
  • Perhaps you are starting to wonder whether there is a better diet than the one you chose in January…
  • Perhaps you are wondering whether the diet you chose is the wrong one for you…

If you are rethinking your diet, you might want to know which diets the experts recommend. Unfortunately, that’s not as easy as it sounds. The diet world has become just as divided as the political world.

Fortunately, you have an impartial resource. Each year US News & World Report invites a panel of experts with different points of view to evaluate popular diets. They then combine the input from all the experts into rankings of the diets in various categories.

If you are still searching for your ideal diet, I will summarize the US News & World Report’s “Best Diets In 2021”. For the full report, click on this link.

How Was This Report Created?

Expert PanelUS News & World Report recruited panel of 25 nationally recognized experts in diet, nutrition, obesity, food psychology, diabetes, and heart disease to review the 39 most popular diets.  They rated each diet in seven categories:

  • How easy it is to follow.
  • Its ability to produce short-term weight loss.
  • Its ability to produce long-term weight loss.
  • its nutritional completeness.
  • Its safety.
  • Its potential for preventing and managing diabetes.
  • Its potential for preventing and managing heart disease.

They converted the experts’ ratings to scores 5 (highest) to 1 (lowest). They then used these scores to construct nine sets of Best Diets rankings:

  • Best Diets Overall combines panelists’ ratings in all seven categories. However, all categories were not equally weighted. Short-term and long-term weight loss were combined, with long-term ratings getting twice the weight. Why? A diet’s true test is whether it can be sustained for years. And safety was double counted because no diet should be dangerous.
  • Best Commercial Diets uses the same approach to rank 15 structured diet programs that require a participation fee or promote the use of branded food or nutritional products.
  • Best Weight-Loss Diets was generated by combining short-term and long-term weight-loss ratings, weighting both equally. Some dieters want to drop pounds fast, while others, looking years ahead, are aiming for slow and steady. Equal weighting accepts both goals as worthy.
  • Best Diabetes Diets is based on averaged diabetes ratings.
  • Best Heart-Healthy Diets uses averaged heart-health ratings.
  • Best Diets for Healthy Eating combines nutritional completeness and safety ratings, giving twice the weight to safety. A healthy diet should provide sufficient calories and not fall seriously short on important nutrients or entire food groups.
  • Easiest Diets to Follow represents panelists’ averaged judgments about each diet’s taste appeal, ease of initial adjustment, ability to keep dieters from feeling hungry and imposition of special requirements.
  • Best Plant-Based Diets uses the same approach as Best Diets Overall to rank 12 plans that emphasize minimally processed foods from plants.
  • Best Fast Weight-Loss Diets is based on short-term weight-loss ratings.

Which Diets Are Best In 2021?

The word WInner in white letters surrounded by a burst of colorful stars in 3d

Are you ready? If this were an awards program I would be saying “Envelop please” and would open the envelop slowly to build suspense.

However, I am not going to do that. Here are the top 5 and bottom 5 diets in each category (If you would like to see where your favorite diet ranked, click on this link). [Note: I excluded commercial diets from this review.]

Best Diets Overall 

The Top 5: 

#1: Mediterranean Diet

#2: DASH Diet (This diet was designed to keep blood pressure under control, but you can also think of it as an Americanized version of the Mediterranean diet.)

#3: Flexitarian Diet (A flexible semi-vegetarian diet).

#4: Mayo Clinic Diet

#5: MIND Diet (This diet is a combination of Mediterranean and DASH but is specifically designed to reduce cognitive decline as we age.)

The Bottom 5: 

#35: Modified Keto Diet

#36: Whole 30 Diet

#37: GAPS Diet (A diet designed to improve gut health).

#38: Keto Diet

#39: Dukan Diet

Best Weight-Loss DietsWeight Loss

The Top 5: 

#1: Flexitarian Diet

#2: Vegan Diet

#3: Volumetrics Diet (A diet based on the caloric density of foods).

#4: Mayo Clinic Diet

#5: Ornish Diet

The Bottom 5: 

#35: Fertility Diet

#36: Whole 30 Diet

#37: Alkaline Diet

#38: AIP Diet (A diet designed for people with autoimmune diseases)

#39: GAPS Diet

Best Diabetes Diets

The Top 5: 

#1: Flexitarian Diet

#2: Mediterranean Diet

#3: DASH Diet

#4: Mayo Clinic Diet

#5: Vegan Diet

The Bottom 5: 

#35: The Fast Diet

#36: AIP Diet

#37: GAPS Diet

#38: Whole 30 Diet (A diet designed for people with autoimmune diseases)

#39: Dukan Diet

strong heartBest Heart-Healthy Diets 

The Top 5: 

#1: DASH Diet

#2: Mediterranean Diet

#3: Ornish Diet (A diet based on the caloric density of foods).

#4: Flexitarian Diet

#5: Vegan Diet

The Bottom 5: 

#35: Keto Diet

#36: AIP Diet

#37: Whole 30 Diet

#38: Modified Keto Diet

#39: GAPS Diet

Best Diets for Healthy Eating

The Top 5: 

#1: DASH Diet

#2: Mediterranean Diet

#3: Flexitarian Diet

#4: TLC Diet (A diet designed to promote heart health)

#5: MIND Diet

The Bottom 5: 

#35: Atkins Diet

#36: Raw Food Diet

#37: Modified Keto Diet

#38: Dukan Diet

#39: Keto Diet 

Easiest Diets to FollowEasy

The Top 5: 

#1: Mediterranean Diet

#2: Flexitarian Diet

#3: MIND Diet

#4: DASH Diet

#5: Fertility Diet

The Bottom 5: 

#35: Keto Diet and Modified Keto Diet (tie)

#36: Whole 30 Diet

#37: Dukan Diet

#38: GAPS Diet

#39: Raw Foods Diet 

Best Fast Weight-Loss Diets

The Top 5 (Excluding Commercial Diets): 

#1: Atkins Diet

#2: Biggest Loser Diet

#3: Keto Diet

#4: Raw Food Diet

#5: Volumetrics Diet

Which Diets Are Best For Rapid Weight Loss?

Happy woman on scaleLet me start with some general principles:

#1: If you are looking for rapid weight loss, any whole food restrictive diet will do.

  • The Atkins and keto diets are meat heavy, low carb diets. They restrict fruits, some vegetables, grains, and most legumes.
  • The Biggest Loser diet relies on restrictive meal plan and exercise programs.
  • The restrictions of the raw food diet are obvious.
  • The volumetrics diet restricts foods with high caloric density.
  • The vegan diet, which ranks #7 on this list, is a very low fat diet that eliminates meat, dairy, eggs, and animal fats.
  • I did not include commercial diets that rated high on this list, but they are all restrictive in one way or another.

#2: Restrictive diets ultimately fail.

  • The truth is 90-95% of people who lose weight quickly on a restrictive diet regain most of that weight in the next two years. The pounds come back and often bring their friends along as well. Many people regain more weight than they lost. This is the famous “Yo-Yo Effect”.
  • If dieters paid for one of the commercial diets, they may as well have burned their money.
  • When I talk with people about weight loss, many of them tell me the Atkins diet is the only one they can lose weight on. That would be impressive if they were at a healthy weight, but most are not. They are overweight. I am starting to see the same thing from overweight people who have used the keto diet to lose weight and have regained their weight.

#3: We should ask what happens when we get tired of restrictive diets and add back some of your favorite foods.

  • If you lose weight on a vegan diet and add back some of your favorite foods, you might end up with a semi-vegetarian diet. This is a healthy diet that can help you maintain your weight loss.
  • If you lose weight on the Atkins or keto diets and add back some of your favorite foods, you end up with the typical American diet – one that is high in both fat and carbs. This is not a recipe for long-term success.
  • Long term weight loss is possible if you transition to a healthy diet after you have lost the weight. In a recent article in “Health Tips From The Professor” I wrote about an organization called the National Weight Control Registry. These are people who have been successful at keeping the weight off. For purposes of this discussion, two points are important.
  • They lost weight on every possible diet.
  • They kept the weight off by following a healthy reduced calorie, low fat diet. (For what else they did, click here).

Which Diet Should You Choose?

Which Diet Is BestWith rapid weight loss out of the way, let’s get back to the question, “Which Diet Should You Choose?” My recommendations are:

  • Choose a diet that fits your needs. That is one of the things I like best about the US News & World Report ratings. The diets are categorized. If your main concern is diabetes, choose one of the top diets in that category. If your main concern is heart health… You get the point.
  • Choose diets that are healthy and associated with long term weight loss. If that is your goal, you will notice that primarily plant-based diets top these lists. Meat-based, low carb diets like Atkins and keto are near the bottom of the lists.
  • Choose diets that are easy to follow. The less-restrictive primarily plant-based diets top this list – diets like Mediterranean, DASH, MIND, and flexitarian.
  • Choose diets that fit your lifestyle and dietary preferences. For example, if you don’t like fish and olive oil, you will probably do much better with the DASH or flexitarian diet than with the Mediterranean diet.
  • Finally, focus on what you have to gain, rather than on foods you have to give up.
    • On the minus side, none of the diets include sodas, junk foods, and highly processed foods. Teose foods should go on your “No-No” list. Sweets should be occasional treats and only as part of a healthy meal. Meat, especially red meat, should become a garnish rather than a main course.
    • On the plus side, primarily plant-based diets offer a cornucopia of delicious plant foods you probably didn’t even know existed. Plus, for any of the top-rated plant-based diets, there are websites and books full of mouth-watering recipes. Be adventurous.

The Bottom Line 

For many of you the “bloom” has gone off the new diet you started so enthusiastically in January. If you are rethinking your diet, you might want to know which diets the experts recommend. Unfortunately, that’s not as easy as it sounds. The diet world has become just as divided as the political world.

Fortunately, you have an impartial resource. Each year US News & World Report invites a panel of experts with different points of view to evaluate popular diets. They then combine the input from all the experts into rankings of the diets in various categories. In the article above I summarize the US News & World Report’s “Best Diets In 2021”.

There are probably two questions at the top of your list.

#1: Which diets are best for rapid weight loss? Here are some general principles:

  • If you are looking for rapid weight loss, any whole food restrictive diet will do.
  • Restrictive diets ultimately fail.
  • We should ask what happens when we get tired of restrictive diets and add back some of our favorite foods.
  • Long term weight loss is possible if you transition to a healthy diet after you have lost the weight.

#2: Which diet should you choose? Here the principles are:

  • Choose a diet that fits your needs.
  • Choose diets that are healthy and associated with long term weight loss.
  • Choose diets that are easy to follow.
  • Choose diets that fit your lifestyle and dietary preferences.
  • Finally, focus on what you have to gain, rather than on foods you have to give up.

For more details on the diet that is best for you, read the article above.

These statements have not been evaluated by the Food and Drug Administration. This information is not intended to diagnose, treat, cure, or prevent any disease.

Do Antioxidants Reduce Diabetes Risk?

What Diet Is Best For Reducing Your Risk Of Diabetes?

ConfusionI don’t need to tell you that nutrition is confusing. The headlines change day to day. One day antioxidants are good for you. The next day they are worthless. What are you to believe?

That is why I knew you would be skeptical when you saw recent headlines saying things like, “Antioxidants reduce your risk of diabetes” or “An antioxidant-rich diet may prevent diabetes”. You are probably waiting for the other shoe to drop.

You are waiting for the next headline telling you to ignore the previous headlines.

That is why I decided to analyze the study (FM Mancini et al, Diabetologia, 61: 308-316, 2018) behind the headlines and tell you whether the headlines were true or false. More importantly, I wanted to put the study into perspective so you could apply the findings to your life.

How Was The Study Done?

Clinical StudyThe data for this paper came from the Interaction of Genetic and Lifestyle Factors on the Incidence of Type 2 Diabetes (InterAct) study. French women born between 1925 and 1950 were enrolled in the study beginning in 1990.

Women were excluded from the study if they had pre-existing cardiovascular disease, diabetes, or cancer.

In June of 1993 a very extensive dietary questionnaire was mailed to all participants. The antioxidant capacity of each of the foods in the diet was estimated using an existing database, and the total antioxidant content of each woman’s diet was calculated.

A total of 64,223 women (average age = 52) completed the questionnaire and were followed for 15 years. During that time 1751 of the women developed type 2 diabetes.

The study correlated the total antioxidant content of the diet with the risk of developing type 2 diabetes. Coffee was excluded from the analysis because the antioxidants found in coffee are high molecular weight compounds, and it is not clear how well they are absorbed.

The major sources of antioxidants in the French diet were fruits (23%), vegetables (19%), wine (15%), tea (10%), and chocolate (2%). Whole grains and beans are also good sources of antioxidants, but the French (and Americans) don’t eat enough of them to influence their total antioxidant intake.

In case you were wondering why wine and chocolate were among the five top sources of antioxidants, remember this is the French diet we are talking about.

Do Antioxidants Reduce Diabetes Risk?

Diabetes and healthy die The authors of the study divided the women into 5 groups (quintiles) based on the antioxidant content of their diets. Quintile one had the lowest antioxidant intake, and quintile five had the highest antioxidant intake.

Compared to the women in quintile one (lowest antioxidant intake), the risk of developing type 2 diabetes was decreased by:

  • 15% for women in quintile two.
  • 30% for women in quintile three.
  • 38% for women in quintile four.
  • 39% for women in quintile five (highest antioxidant intake).
  • As you might guess from the data above, there was an inverse association between total antioxidant content of the diet and type 2 diabetes up until somewhere between the third and fourth quintiles.
  • Above that antioxidant level, the relationship between dietary antioxidant content and risk of developing type 2 diabetes plateaued.

The authors concluded, “Our findings suggest that the total antioxidant capacity of the diet may play a role in reducing the risk of type 2 diabetes in middle-aged women. As type 2 diabetes represents a high disease burden worldwide, our results may have important public health implications.”

What Diet Is Best For Reducing Your Risk Of Type 2 Diabetes?

While most of the headlines talked about the effect of antioxidant intake on the risk of developing type 2 diabetes, we need to remember that the study was done with antioxidant-rich foods. That raises 3 important questions.

#1: Is it the antioxidants or the foods that decrease the risk of developing type 2 diabetes?

Diabetes-&-Vitamin-CThis was a diet rich in fruits, vegetables, and tea with moderate amounts of wine and chocolate. Although they didn’t make it to the top 5 in this study, whole grains and beans are also a good source of dietary antioxidants. In short, this was a very healthy diet.

That represents a complicating factor. For example, fruits and vegetables are also good sources of non-antioxidant phytonutrients that appear to have health benefits. They are also a good source of fiber and the healthy gut bacteria that eat the fiber.

In short, this study shows that healthy foods reduce the risk of developing type 2 diabetes. Since oxidative stress is thought to play a role in the development of diabetes, it is logical that antioxidants in these foods may help prevent diabetes. However, in reality, we don’t know how much of the risk reduction is due to the antioxidant content of the foods and how much is due to other components of the foods.

#2: Is it healthy foods that decrease the risk of type 2 diabetes, or is it due to decreased intake of unhealthy foods?

food choiceThe skeptic in me wants to ask, “Is the diabetes risk reduction due to the healthy foods included in the diet or does it derive from the fact that those foods displaced unhealthy foods from the diet?” It is also legitimate to ask whether people who eat healthier foods also followed a healthier lifestyle.

Fortunately, the data from this study puts those questions to rest. Compared to women in the lowest quintile of antioxidant intake, women in the highest quintile of antioxidants intake from diet:

  • Drank more sugar-sweetened and artificially sweetened beverages.
  • Ate more processed meat.
  • Ate more calories.
  • Smoked more.
  • Were just as likely to be overweight.

These women were more physically active, but in other ways their diet and lifestyle were no better than women with much less antioxidant intake.

However, we do need to remember that these are French women. Their overall diet and lifestyle is much better than American women. For example, at their worst:

  • 30% were overweight or obese compared to >60% for American women.
  • Intake of processed meat was less than ½ serving/day.
  • Intake of sugar-sweetened beverages was less than 1 ounce/day and intake of artificially sweetened beverages was 1.3 ounces/day.

#3: How much healthy foods do your need to include in your diet to reduce the risk of type 2 diabetes?

fruits and vegetablesThe fact that the beneficial effect of adding antioxidant-rich foods to your diet reduced the risk of developing type 2 diabetes up to a point and then plateaued has important implications. It means you don’t need to be a vegan to reduce your risk of type 2 diabetes. You just need to include enough healthy foods in your diet.

“How much healthy foods”, you might ask. If we look at the point at which the benefit of eating antioxidant-rich foods plateaued in this study, the women were eating:

  • 5-6 servings of fresh fruits and vegetables per day.
  • 4 cups of tea/day.
  • 7 pieces of chocolate/day.
  • 1 glass of wine/day.

If you are an American who is consuming less tea, chocolate, and wine than the French, you will probably want to aim for 6 or more servings of fresh fruits and vegetables per day and include whole grains and beans in your diet.

In a previous issue of “Health Tips From the Professor” I reviewed a study that looked at the optimal intake of fruits and vegetables for various other diseases. That study reported:

  • 10 servings per day is optimal for reducing the risk of heart disease, stroke, and premature death.
  • 6 servings per day is optimal for reducing the risk of cancer.

This study suggests 6 servings of fruits and vegetable per day is likely to also be optimal for reducing the risk of developing type 2 diabetes.

The bad news is that the average American eats one serving of fruit and less than 2 servings of vegetables a day. The good news is that each added serving of fruits and vegetables reduces your risk of disease and premature death. The same is probably true for whole grains and beans, but they weren’t specifically included in these studies.

What About Supplementation?

vitamin COf course, some of you will be tempted to say, “Changing my diet is hard. I’ll just take antioxidant supplements.” Will that work. If we are talking about individual antioxidant supplements, the answer is a clear, “No”. Numerous clinical studies have shown that.

However, one study looked at a holistic approach to supplementation and found that it significantly decreased the risk of developing type 2 diabetes over a 20-year period. That is encouraging, but you need to know that the people in that study were not just consuming antioxidant supplements. They were also consuming:

  • Supplements containing B vitamins, calcium, magnesium, and trace minerals.
  • Plant-based protein supplements that replaced some of the animal protein in their diet.
  • Omega-3 supplements.
  • Probiotic supplements.

So, just as was true for the diet study discussed above, antioxidant supplements may be beneficial in reducing the risk of developing type 2 diabetes. However, it is not possible to separate the benefits of antioxidant supplements from the other supplements included in the study.

The Bottom Line

You may have seen recent headlines claiming, “Antioxidants reduce your risk of diabetes”. The study behind those headlines was actually looking at the effect of antioxidant-rich foods like fruits and vegetables at decreasing the risk of developing type 2 diabetes.

The study did show that increasing the amount of antioxidant-rich foods in your diet decreases your risk of developing type 2 diabetes.

Since oxidative stress is thought to play a role in the development of diabetes, it is logical that antioxidants in those foods may help prevent diabetes. However, in reality we don’t know how much of the risk reduction is due to the antioxidant content of the foods and how much is due to the phytonutrient and fiber content of the foods.

There was an inverse association between total antioxidant content of the diet and type 2 diabetes up until somewhere between the 5 and 6 servings per day of fresh fruits and vegetables. At that point. the beneficial effect of eating antioxidant-rich foods plateaued. Eating 6 servings per day of fresh fruits and vegetables appears to be optimal for reducing the risk of developing type 2 diabetes.

To put that into perspective, a previous study that looked at the optimal intake of fruits and vegetables for various other diseases reported:

  • 10 servings per day is optimal for reducing the risk of heart disease, stroke, and premature death.
  • 6 servings per day is optimal for reducing the risk of cancer.

The bad news is that the average American eats one serving of fruit and less than 2 servings of vegetables a day. The good news is that each added serving of fruits and vegetables reduces your risk of disease and premature death. The same is probably true for whole grains and beans, but they weren’t specifically included in these two studies.

Of course, if you really wish to prevent or reverse type 2 diabetes, a holistic approach including weight control, exercise, diet, and supplementation is best.

For more details, including a more detailed discussion of supplementation, read the article above.

These statements have not been evaluated by the Food and Drug Administration. This information is not intended to diagnose, treat, cure, or prevent any disease.

 

Finally, you should also never think of supplementation as a replacement for a healthy diet. If you wish to reduce your risk of developing type 2 diabetes, I recommend a holistic approach that includes weight control, exercise, diet, and supplementation.

Does Poverty Affect Nutritional Status?

How Can We Improve Nutrition In Disadvantaged Communities?

Calcium FoodsRecently there has been increased focus on health disparities in disadvantaged communities. In our discussions of the cause of these health disparities, two questions seem to be ignored.

1. Does poverty play a role in poor nutrition?

2. Does poor nutrition play a role in the health disparities we see in disadvantaged communities?

The study (K Marshall et al, PLoS One 15(7):e0235042) I discuss in this week’s “Health Tips From The Professor” attempts to address both of these questions.

Before, I start, let me put this study into context.

  • Osteoporosis is a major health problem in this country. Over 2 million osteoporosis-related fractures occur each year, and they cost our health care system over 19 billion dollars a year. Even worse, for many Americans these osteoporosis-related fractures often cause:
    • A permanent reduction in quality of life.
    • Immobility, which can lead to premature death.
  • Inadequate calcium and vitamin D intakes increase the risk of osteoporosis.

While most studies simply report calcium and vitamin D intakes for the general population, this study breaks them down according to ethnicity and income levels. The results were revealing.

How Was The Study Done?

Clinical StudyThis study drew on data from the 2007-2010 and 2013-2014 National Health and Nutrition Examination Surveys (NHANES). These surveys are conducted by the National Center for Health Statistics, which is part of the CDC. They are designed to assess the health and nutritional status of adults and children in the United States and are used to produce health statistics for the nation.

The NHANES interview includes demographic, socioeconomic, dietary, and health-related questions. The examination component consists of medical, dental, and physiological measurements, as well as laboratory tests administered by highly trained medical personnel. All participants visit a physician. Dietary interviews and body measurements are included for everyone.

This study measured calcium intake, vitamin D intake, and osteoporosis for adults 50 and older. The data were separated by gender, ethnic group and income level. Four different measures of poverty were used. For purposes of simplicity, I will only use one of them, income beneath $20,000, for this article.

Does Poverty Affect Nutritional Status?

The Effect of Ethnicity And Gender On Calcium And Vitamin D Intake: 

FriendsWhen the authors looked at the effect of ethnicity and gender on calcium and vitamin D intake, in people aged 50 and older the results were (Note: I am using the same ethnic nomenclature used in the article):

Hispanics:

    • 66% (75% for women and 56% for men) were getting inadequate calcium intake.
    • 47% (47% for women and 47% for men) were getting inadequate vitamin D intake.

Non-Hispanic Blacks:

    • 75% (83% for women and 64% for men) were getting inadequate calcium intake.
    • 53% (51% for women and 54% for men) were getting inadequate vitamin D intake.

Non-Hispanic Whites:

    • 60% (64% for women and 49% for men) were getting inadequate calcium intake.
    • 33% (30% for women and 37% for men) were getting inadequate vitamin D intake.

For simplicity, we can generalize these data by saying:

Gender:

    • Women are more likely to be calcium-deficient than men.
    • Men are more likely to be vitamin D-deficient than women.

Ethnicity: For both genders and for both calcium and vitamin D:

    • The rank order for deficiency is Non-Hispanic Blacks > Hispanics > Non-Hispanic Whites.

The Effect Of Poverty On Calcium Intake, Vitamin D Intake, And Osteoporosis:

PovertyWhen looking at the effect of poverty, the authors asked to what extent poverty (defined as income below $20,000/year) increased the risk of calcium and vitamin D deficiency in adults over 50. Here is a summary of the data

Hispanics:

    • For both Hispanic women and Hispanic men, poverty had little effect on the risk of calcium and vitamin D deficiency.

Non-Hispanic Blacks:

    • For Non-Hispanic Black women, poverty had little effect on the risk of calcium deficiency, and vitamin D deficiency.
    • For Non-Hispanic Black men, poverty increased the risk of both calcium and vitamin D deficiency by 32%.

Non-Hispanic Whites:

    • For Non-Hispanic White women, poverty had little effect on the risk of calcium deficiency but increased the risk of vitamin D deficiency by 30%.
    • For Non-Hispanic White men, poverty increased the risk of both calcium deficiency and vitamin D deficiency by 18%.

For simplicity, we can generalize these data by saying:

    • Poverty increased the risk of both calcium and vitamin D deficiency for Non-Hispanic Black men, Non-Hispanic White women, and Non-Hispanic White men.

Other statistics of interest:

  • The SNAP program (formerly known as Food Stamps) had little effect on calcium and vitamin D intake. There are probably two reasons for this:
    • In the words of the authors, “While the SNAP program has been shown to decrease levels of food insecurity, the quality of the food consumed by SNAP participants does not meet the standards for a healthy diet.” In other words, the SNAP program ensures that participants have enough to eat, but SNAP participants are just as likely to prefer junk and convenience foods as the rest of the American population. The SNAP program provides no incentive to eat healthy foods.
    • We also need to remember that dairy foods are a major source of calcium and vitamin D in the American diet and that Hispanics and Non-Hispanic Blacks are more likely to be lactose-intolerant than the rest of the American population. There are other sources of calcium and vitamin D in the American diet. But without some nutrition education, most Americans are unaware of what they are.
  • An increased risk of osteoporosis was found in Non-Hispanic Black men, and Non-Hispanic Whites with incomes below $20,000/year.
    • This increased risk of osteoporosis was seen primarily for the individuals in each group who were deficient in calcium and vitamin D. There were other factors involved, but I will focus primarily on the effect of poverty on calcium and vitamin D intake in the discussion below.

How Can We Improve Nutrition In Disadvantaged Communities?

Questioning WomanLet’s start with the two questions I posed at the beginning of this article:

1. Does poverty play a role in poor nutrition?

2. Does poor nutrition play a role in the health disparities we see in disadvantaged communities?

In terms of calcium intake, vitamin D intake, and the risk of osteoporosis, the answer to both questions appears to be, “Yes”. So, the question becomes, “What can we do?”

It is when we start to ask what we can do to increase calcium and vitamin D intake and decreased the risk of osteoporosis in disadvantaged communities that we realize the complexity of the problem. There are no easy answers. Let’s look at some of the possibilities.

[Note: I am focusing on what we can do to prevent osteoporosis, not to detect or treat osteoporosis. The solutions for those issues would be slightly different.]

1. We could increase funding for SNAP. That would increase the quantity of food available for low income families, but, as noted above, would do little to improve the quality of the food eaten.

2. We could improve access to health care in disadvantaged communities. But unless physicians started asking their patients what they eat and start recommending a calcium and vitamin D supplement when appropriate, this would also have little impact on diet quality.

3. We could improve nutrition education. A colleague of mine in the UNC School of Public Health ran a successful program of nutrition education through churches and community centers in disadvantaged communities for many years. The program taught people how to eat healthy on a limited budget. Her program improved the health of many people in disadvantaged communities.

However, the program was funded through grants. When she retired, federal and state money to support the program eventually dried up. The program she started is a model for what we should be doing.

4. The authors suggested food fortification as a solution. In essence, they were suggesting that junk and convenience foods be fortified with calcium and vitamin D. That might help, but I don’t think it is a good idea.

If we want to improve the overall health of disadvantaged communities, we need to find ways to replace junk and convenience foods with healthier foods. Adding a few extra nutrients to unhealthy foods does not make them healthy.

5. The authors also said that a calcium and vitamin D supplement would be a cheap and convenient way to eliminate calcium and vitamin D deficiencies. Unfortunately, supplements are currently not included in the SNAP program. Unless that is changed, even inexpensive supplements are a difficult choice for families below the poverty line.

As I said at the beginning of this section, there are no easy answers. It is easy to identify the problem. It would be easy to throw money at the problem. But finding workable solutions that could make a real difference are hard to identify.

Yes, we should make sure every American has enough to eat. Yes, we should make sure every American has access to health care. But, if we really want to improve the health of our disadvantaged communities, we also need to:

  • Change the focus of our health care system from treatment of disease to prevention of disease.
  • Train doctors to ask their patients what they eat and to instruct their patients how simple changes in diet could dramatically improve their health.
  • Provide basic nutrition education to disadvantaged communities at places where they gather, like churches and community centers. This would cover topics like eating healthy, shopping healthy on a limited budget, and cooking healthy.

We don’t necessarily need another massive federal program. But those of us with the knowledge could each volunteer to share that knowledge in disadvantaged communities.

  • Cover basic supplements, like multivitamins, calcium and vitamin D supplements, and omega-3 supplements in food assistance programs like SNAP.

The Bottom Line

Osteoporosis is a major health problem in this country. Over 2 million osteoporosis-related fractures occur each year, and they cost our health care system over 19 billion dollars a year. Even worse, for many Americans these osteoporosis-related fractures often cause:

  • A permanent reduction in quality of life.
  • Immobility, which can lead to premature death.

We know that inadequate calcium and vitamin D intakes increase the risk of osteoporosis. But most studies simply report calcium and vitamin D intakes for the general population. At the beginning of this article, I posed two questions.

  1.  Does poverty play a role in poor nutrition?

2. Does poor nutrition play a role in the health disparities we see in disadvantaged communities?

A recent study looked at the effect of gender, ethnicity and income levels on calcium intake, vitamin D intake, and the risk of developing osteoporosis. The results of this study shed some light on those two questions.

When looking at the effect of gender and ethnicity on the risk of inadequate calcium and vitamin D intake, the study found:

  • Women are more likely to be calcium-deficient than men.
  • Men are more likely to be vitamin D-deficient than women.
  • For both genders and for both calcium and vitamin D, the rank order for deficiency is Non-Hispanic Blacks > Hispanics > Non-Hispanic Whites. [Note: Note: I am using the same ethnic nomenclature used in the study.]
  • Poverty (defined as incomes below $25,000/year) significantly increased the risk of both calcium and vitamin D deficiency for Non-Hispanic Black men, Non-Hispanic White women, and Non-Hispanic White men.
  • An increased risk of osteoporosis was also found in Non-Hispanic Black men, and Non-Hispanic White men and women with incomes below $20,000/year.
  • This increased risk of osteoporosis was seen primarily for the individuals in each group who were deficient in calcium and vitamin D.

In short, this study suggests that the answer to both questions I posed at the beginning of the article is, “Yes”.

For more information and a discussion of what we could do to correct this health disparity in disadvantaged communities, read the article above.

These statements have not been evaluated by the Food and Drug Administration. This information is not intended to diagnose, treat, cure, or prevent any disease.

Health Tips From The Professor