How Much Leucine Do Seniors Need?

Where Can Seniors Find The Protein And Leucine They Need?

Author: Dr. Stephen Chaney 

Frail ElderlyMost Americans lose lean muscle mass as they age, a physiological process called sarcopenia. There are three factors that influence the rate at which we lose muscle mass as we age:

  • Our physiology changes. Our bodies break down our protein stores more rapidly and we have a harder time utilizing the protein in our diet to replenish those protein stores.
  • We become less active. In some cases, this reflects physical disabilities, but all too often it is because we are not giving weight-bearing exercises the proper priority in our busy lives.
  • Our diets have become inadequate. A major driver of this phenomenon is loss of appetite which results in decreased caloric intake. However, physical disability, isolation, and insufficient income also contribute.

Some of you may be saying “So what? I wasn’t planning on being a champion weightlifter in my golden years.” The “So what” is that loss of muscle mass leads to reduced mobility, a tendency to fall (which often leads to debilitating bone fractures) and a lower metabolic rate – which leads to obesity and all the illnesses that go along with obesity.

Fortunately, sarcopenia is not an inevitable consequence of aging. There are things that we can do to prevent it. The most important thing that we can do to prevent muscle loss as we age is to exercise – and I’m talking about resistance (weight) training, not just aerobic exercise.

But we also need to optimize our protein intake and our leucine intake. Protein is important because our muscle fibers are made of protein.

Leucine is an essential amino acid. It is important because it stimulates the muscle’s ability to make new protein. Leucine and insulin act synergistically to stimulate muscle protein synthesis after exercise.

In a previous issue of “Health Tips From the Professor” I shared studies showing that the amount of protein and leucine we need to prevent muscle loss increases as we get older. The study (ME Lixandrao et al, Nutrients, Volume 13, Issue 10, 10.3390/nu13103536) I am reviewing today is an update on the leucine needs for seniors.

How Was This Study Done?

clinical studyThe investigators recruited 67 healthy, elderly, overweight adults (34 men and 33 women; average age = 69.7; average BMI = 26.4) in Basel, Switzerland for the study. The participants selected for the study were not engaged in any kind of regular resistance or aerobic training in the previous 6 months.

Participants were asked to fill in three 24-hour dietary recalls (2 on non-consecutive weekdays and one on a weekend day). A trained nutritionist gave instructions on how to perform the dietary recalls. After the dietary recalls were completed, the nutritionists used pictures of foods included in each participant’s diet recall to confirm the accuracy of their portion size estimates. This diet information was used to calculate habitual daily protein and leucine intake.

The investigators used magnetic resonance imaging (MRI) to measure quadriceps cross-sectional area – a measure of muscle mass. They also used performance on a leg extension machine to measure unilateral maximum dynamic muscle strength – a measure of muscle strength.

The study correlated leucine intake with both muscle mass and muscle strength. The data were corrected for sex, age, and total protein intake normalized to body weight.

How Much Leucine Do Seniors Need? 

leucineThere was a biphasic correlation between leucine intake and both muscle mass and muscle strength in this population.

  • There was a positive association between leucine intake and muscle mass up to 7.6 gm/day. After that a plateau was reached. Additional leucine had no effect on muscle mass.
  • There was a positive association between leucine intake and muscle strength up to 8.0 gm/day. After that a plateau was reached. Additional leucine had no effect on muscle strength.
  • These associations held true even after correcting for total protein intake. This is an important control because none of these participants were taking a leucine supplement, so those consuming more leucine were also consuming more protein.

The authors concluded, “We demonstrated that total daily leucine intake is associated with muscle mass and strength in healthy older individuals, and this association remains after correcting for multiple factors, including overall protein intake. Furthermore, our…analysis revealed…a potential threshold for habitual leucine intake, which may guide future research on the effect of chronic leucine intake in age-related muscle loss [sarcopenia].

Randomized control trials should test the utility of additional leucine to counteract frailty in the elderly.”

What Does This Study Mean For You?

ConfusionLet me start by saying that leucine is not a “magic bullet” that will prevent sarcopenia (age-related loss of muscle mass) by itself. Three things are essential for preventing sarcopenia:

  • Resistance (weight bearing) exercise. You should aim for at least 3 days/week of moderate intensity weight bearing exercise a week.

If you have physical limitations, consult with your health professional before beginning an exercise program. And if you have not done weight bearing exercise before, it is best to start with instruction from a personal trainer to be sure you are using appropriate weights and appropriate form.

[Note: The participants in this study had not done weight bearing exercise for 6 months prior to the study and did not exercise during the study.]

  • Adequate protein. I have discussed this in a previous issue of “Health Tips From the Professor”. If you are in your 30’s, 15-20 grams of protein per meal will do. But if you are in your 60’s and above, it’s better to aim for 25-30 grams of protein per meal.

[Note: On average the men in this study were consuming 87 grams of protein per day. That’s 29 grams per meal. The women in this study averaged 67 grams of protein per day or 22 grams per meal. So, most of the participants in this study were consuming adequate protein.]

  • Adequate leucine. This study showed that the benefits of leucine plateaued at around 7.6-8.0 grams per day or 2.5 to 2.7 grams per meal for non-exercising adults in their 60’s and 70’s.

This is in close agreement with studies showing that 25-30 grams of protein and 2.7 grams of leucine were optimal for seniors in this age range following weight bearing exercise.

[Note: This study only determined the optimal intake of leucine. Remember for maximal effectiveness at reducing age-related muscle mass (sarcopenia) you need optimal protein, optimal leucine, and an optimal resistance (weight bearing) exercise program.]

Where Can Seniors Find The Protein And Leucine They Need?

For most Americans this is not too difficult as the table above shows. If you look at single foods, chicken and soybeans are the best sources of both protein and leucine. Other meats and other beans & legumes are also good choices.

I included things like eggs, dairy foods, broccoli, and spinach as a reminder that you don’t need to get all your protein and leucine from a single food source. Other whole foods included in your meal can contribute to your protein and leucine totals.

This table also shows that you don’t need to be a carnivore to get the protein and leucine you need. However, if you avoid most meats or are a pure vegan, you will need to plan your diet a bit more carefully.

Finally, if you are looking to optimize your workouts with an after-workout plant-based protein shake, soy protein would be your best choice. If you chose plant protein, you should look for high-quality protein shakes with added leucine to make sure you meet both your protein and leucine goals.

The Bottom Line

Most Americans lose lean muscle mass as we age, a physiological process called sarcopenia. This loss of muscle mass leads to reduced mobility, a tendency to fall (which often leads to debilitating bone fractures) and a lower metabolic rate – which leads to obesity and all the illnesses that go along with obesity.

Fortunately, sarcopenia is not an inevitable consequence of aging. There are 3 things we can do to prevent it.

  • Exercise – and I’m talking about resistance (weight) training, not just aerobic exercise. This is the most important thing that we can do to prevent muscle loss as we age.
  • Optimize our protein intake.
  • Optimize our leucine intake.

Previous studies have determined the optimal protein intake for preventing sarcopenia. The study I describe above determined the optimal leucine intake.

For more details about the study and what it means for you, read the article above.

These statements have not been evaluated by the Food and Drug Administration. This information is not intended to diagnose, treat, cure, or prevent any disease.

______________________________________________________________________________

My posts and “Health Tips From the Professor” articles carefully avoid claims about any brand of supplement or manufacturer of supplements. However, I am often asked by representatives of supplement companies if they can share them with their customers.

My answer is, “Yes, as long as you share only the article without any additions or alterations. In particular, you should avoid adding any mention of your company or your company’s products. If you were to do that, you could be making what the FTC and FDA consider a “misleading health claim” that could result in legal action against you and the company you represent.

For more detail about FTC regulations for health claims, see this link.

https://www.ftc.gov/business-guidance/resources/health-products-compliance-guidance

 ______________________________________________________________________

About The Author 

Dr. Chaney has a BS in Chemistry from Duke University and a PhD in Biochemistry from UCLA. He is Professor Emeritus from the University of North Carolina where he taught biochemistry and nutrition to medical and dental students for 40 years.  Dr. Chaney won numerous teaching awards at UNC, including the Academy of Educators “Excellence in Teaching Lifetime Achievement Award”. Dr Chaney also ran an active cancer research program at UNC and published over 100 scientific articles and reviews in peer-reviewed scientific journals. In addition, he authored two chapters on nutrition in one of the leading biochemistry text books for medical students.

Since retiring from the University of North Carolina, he has been writing a weekly health blog called “Health Tips From the Professor”. He has also written two best-selling books, “Slaying the Food Myths” and “Slaying the Supplement Myths”. And most recently he has created an online lifestyle change course, “Create Your Personal Health Zone”. For more information visit https://chaneyhealth.com.

For the past 45 years Dr. Chaney and his wife Suzanne have been helping people improve their health holistically through a combination of good diet, exercise, weight control and appropriate supplementation.

How Much Protein Do Post-Menopausal Women Need?

Does The Design Of The Protein Supplement Matter? 

Author: Dr. Stephen Chaney 

Frail ElderlyYou’ve probably heard the saying, “It’s all downhill after 30”. That’s a particularly gloomy way of looking at it, but Father Time does take a toll on our body. I’m going to focus on age-related loss of muscle mass today, a physiological process called sarcopenia.

There are three factors that influence the rate at which we lose muscle mass as we age:

1) Our physiology changes. Our bodies break down our protein stores more rapidly and we have a harder time utilizing the protein in our diet to replenish those protein stores.

2) We become less active. In some cases, this reflects physical disabilities, but all too often it is because we are not giving weight-bearing exercises the proper priority in our busy lives.

3) Our diets become inadequate. The major driver of this phenomenon is loss of appetite which results in decreased caloric intake. However, physical disability, isolation, and insufficient income also contribute.

Sarcopenia in turn results in:

  • Loss of muscle strength. Even the simple act of picking up a grandchild or a bag of groceries can become problematic.
  • Increased risk of falls and fractures.
  • Lower quality of life.

Obviously, sarcopenia is a major health issue for those of us in our golden years. If you are younger, it is a concern for your parents or grandparents. Sarcopenia is a health issue that affects everyone.

But what can be done to prevent sarcopenia? We can’t change our physiology, but we can change our activity level and our diet. Weight-bearing exercise tugs on our muscle fibers. That stimulates those fibers to incorporate protein into new muscle cells. It is no wonder that weight-bearing exercise is recommended for preventing sarcopenia.

What about diet? Are older adults getting enough protein in their diet to benefit from weight-bearing exercise? I have shared studies showing that older adults need more protein and higher levels of the amino acid leucine to benefit from their workouts.

But those studies were done with men. There have been no studies comparing younger and older women until now.

In this article, I discuss a recent study (CF McKenna et al, Journal of Applied Physiology, Feb 22, 2024 doi.org/10.1152/applphysiol.00886.2023) that asks how much protein is needed to stimulate muscle protein synthesis following a workout in post-menopausal women and compares it to the protein needs of younger women.

How Was The Study Done? 

clinical studyThe investigators enrolled 16 post-menopausal women who were part of a much larger study investigating exercise and nutritional regimens that preserve and/or enhance muscle mass in women.

The women in this study were on average 60 years old with a BMI of 26 (overweight). They had no heart disease, dietary restrictions, and did not take any supplements that could affect protein metabolism.

They were compared to a cohort of pre-menopausal women (average age = 24, BMI = 25 (borderline overweight)) recruited from the same large study. The experimental protocol was the same for the pre-menopausal and post-menopausal cohorts.

The study design was what is called a parallel-group design. Simply put, one leg was exercised using a leg extension machine, while the other leg was rested. The rested leg served as the control for each participant in the study.

Participants were tested ahead of time to determine the “one-repetition maximum” (1RM) weight for complete leg extension for each participant.

On the day of the experiment participants arrived in the laboratory after an overnight fast. One iv line was inserted, and a labeled amino acid was infused into the bloodstream, so the investigators could measure new protein synthesis at any time during the 4-hour experiment. Another iv line was inserted, so the investigators could withdraw blood samples.

At the beginning of the experiment, each participant was given either a whey protein drink (whey protein isolate fortified with vitamins C, B1, B2, B3, folate, B6, and B12 and minerals calcium, magnesium, iron, zinc, and potassium) or water. They then performed a bout of single-leg extensions starting with a warm-up of 2 sets of repetitions at 30% 1RM followed by 3 sets of 12 repetitions at 65% 1RM with 90 seconds of rest provided between sets.

Immediately following exercise, muscle biopsies were collected from both legs (t=0). Muscles biopsies were also collected at 120 and 240 minutes after exercise. Blood samples were collected continually during the experiment.

Muscle tissue was isolated from each biopsy, and something called myofibrillar protein synthesis (protein synthesis in muscle fibers) was determined based on the amount of labeled amino acid incorporated into muscle protein. The amount of protein synthesis due to exercise was determined by subtracting the incorporation of labeled amino acid in muscle fibers in the rested leg from that in the exercised leg.

What Is Leucine? 

leucine protein and exerciseLeucine is an essential amino acid. It is present in all dietary proteins, but it is more abundant in whey and soy protein than in some vegetable proteins.

Leucine is also one of three branched-chain amino acids (valine and isoleucine are the other two). If you are familiar with the weightlifting and body-building world, you will know that branched-chain amino acids are thought to be important for muscle gain. However:

  • It turns out that leucine is the only branched chain amino acid that stimulates muscle protein synthesis (Am J Physiol Endocrinol Metab 291: E381-E387, 2006). And protein is what gives muscles their strength and their bulk.
  • The other branched chain amino acids appear to play a supporting role in the quantities that occur naturally in most proteins. And adding extra valine and isoleucine to a protein supplement appears to reduce the effectiveness of leucine at stimulating muscle gain (Am J Physiol Endocrinol Metab 291: E381-E387, 2006).

What Have Previous Studies Shown? 

weight lifting exerciseWith respect the amount of protein needed to optimize muscle gain after workouts, previous studies have shown that: 

  • The optimal protein intake for maximizing muscle gain post workout is 15-20 gm for young men (Katsanos et al, Am J Clin Nutr 82: 1065-1073, 2005; Moore et al, Am J Clin Nutr, 89: 161-168, 2009) and 20-25 gm for older men (Symons et al, Am J Clin Nutr 86: 451-456, 2007).
  • More protein isn’t necessarily better. The effect of protein intake on post workout muscle gain maxes out at around 25 gm for young men and 30 gm for older men (Symons et al, J Am Diet Assoc 109: 1582-1586, 2009).
  • Whey protein is the best choice for enhancing muscle gain immediately after a workout. Other protein sources (soy, casein, chicken) are better choices for sustaining muscle gain over the next few hours.
  • A previous study by the authors of the present study showed that 15 gm of whey protein was sufficient to stimulate muscle protein synthesis in young women (average age 20). Thus, young women and young men both appear to benefit from 15 gm of protein after a workout.

How Much Protein Do Post-Menopausal Women Need? 

This is a complex study, so let’s just start with the big takeaway from the study:

  • The same whey protein supplement that increased muscle mass in younger women failed to stimulate “cumulative muscle protein synthesis” [net increase in muscle mass] in post-menopausal women. (This was measured by determining net accumulation of labeled amino acids into the muscle fibers of the exercised leg compared to the rested leg.)

With that out of the way, we can focus on some less important findings:

  • There was a short-term (0-2h) transient increase in muscle protein synthesis following exercise with and without the whey protein supplement, but the result was not cumulative. In other words, the transient protein synthesis did not result in an increase in muscle mass.
  • There was a long-term (2-4h) transient increase in muscle protein synthesis following exercise for the group taking the whey protein supplement, but, again, the result was not cumulative. It did not result in a net increase in muscle mass.
  • In the group taking the whey protein supplement there was a transient increase in both insulin and leucine in the blood between 2 and 4 hours. Either or both could have driven the transient increase in protein synthesis observed during that same times.

In the words of the authors, “Ingestion of 15 gm whey protein failed to stimulate [net] myofibrillar (muscle) protein synthesis in post-menopausal women. While resistance exercise with and without feeding stimulate late (2-4 h) and early (0-2h) increases in myofibrillar protein synthesis, further exercise and nutritional manipulations may be necessary to robustly stimulate the skeletal muscle adaptive response to exercise.”

They went on to say that increased exercise intensity and/or increased protein intake may be necessary for post-menopausal women to maintain or increase muscle mass.

What Does This Study Mean For Post-Menopausal Women? 

Questioning WomanI should start by acknowledging that this was a small study, as are most studies in this field of research. In part this reflects the expense of these experiments and the lack of major government support. But it also reflects the difficulty in recruiting subjects for this kind of experiment. They are hooked up to two iv’s for over four hours and have three muscle biopsies removed from each leg during that time. That’s a pretty invasive experimental protocol.

With this limitation in mind, the biggest takeaway from this study is that post-menopausal women need more protein to build muscle mass than younger women. Young women, just like young men, can build muscle mass with as little as 15 gm of protein post-workout.

Unfortunately, this study did not determine how much protein post-menopausal women need to build muscle mass post-workout. And that is a critical question, because women typically have less muscle mass than men when sarcopenia starts to set in. Resistance (weight-bearing) exercise and adequate protein intake are key to preventing the debilitating effects of sarcopenia in post-menopausal women.

In their conclusion, the authors said that “…further exercise and nutritional manipulations may be necessary [to optimize the post-workout gain in muscle mass for post-menopausal women].”

From an exercise standpoint, the authors speculated that higher intensity exercise may be needed to increase muscle mass in post-menopausal women. However, the exercise protocol they used was based on public health recommendations for resistance training for older adults. A more rigorous exercise protocol might not be suitable for many post-menopausal women.

From a nutritional standpoint, they noted that a previous study had shown that 35 gm of protein post-workout was sufficient to build muscle mass in post-menopausal women. However, they considered 35 gm of protein to be a dangerously high intake for a single serving of protein for post-menopausal women. I concur.

In summary, we know that 15 gm of protein post-workout is too little for postmenopausal women, and while 35 gm of protein is sufficient, it is probably too much. Until further studies are performed in post-menopausal women, I would recommend the 20-25 gm of protein shown to support post-workout muscle gain in older men.

But it is not just the amount of protein that is important. The design of the protein supplement also matters.

Does The Design Of The Protein Supplement Matter? 

Protein SupplementWhile the amount of protein in a post-workout supplement is important, the design of the protein supplement also matters. While there are lots of crazy claims on the internet, there are two natural ways to maximize the effect of a protein supplement on muscle mass. Insulin and the amino acid leucine both drive muscle protein synthesis and help maximize post-workout muscle gain.

  • Recent research has shown that 2-3 gm of leucine (2 gm for young men; 3 gm for older men) is sufficient to maximize post workout muscle gain if protein levels are adequate (Am J Physiol Endocrinol Metab 291: E381-E387, 2006). We don’t know the corresponding leucine requirements for women, so we will need to assume they are similar.
    • A 15-gram serving of whey protein isolate only provides 1.4 gm of leucine, far below what is likely to be needed to drive post-workout muscle gain in post-menopausal women.
    • If you are a man over 50 or a post-menopausal woman, you should look for a post-workout protein supplement containing added leucine. And even younger adults will get “more bang for your buck” by choosing protein supplements with added leucine.
  • The insulin response is maximized when the carbohydrate to protein ratio is around 2.5 to 1. The manuscript did not list carbohydrates among the ingredients used in the whey protein supplement used in this study. But if it is like many whey protein supplements nowadays, it probably contained little or no carbohydrate.
    • Although less popular in today’s low carbohydrate world, post-workout supplements with a high carbohydrate to protein ratio are also effective in maximizing post-workout muscle gain.

The Bottom Line 

Sarcopenia (age-related muscle loss) is a major concern for older Americans. Sarcopenia can result in:

  • Loss of muscle strength. Even the simple act of picking up a grandchild or a bag of groceries can become problematic.
  • Increased risk of falls and fractures.
  • Lower quality of life.

Sarcopenia can be prevented by a combination of resistance exercise and adequate amounts of protein following the workout.

We know that older men require more protein than young men in a post-workout supplement designed to help them maximize the muscle gain associated with resistance exercise. But similar experiments had not been performed with women until now.

In the article above I share a study that shows that post-menopausal women need more protein than young women in a post-workout supplement. But the study did not determine how much protein they need.

I also discuss the amount of protein post-menopausal women likely need in a post-workout supplement, and how that protein supplement could be designed to maximize muscle gain and prevent sarcopenia.

For more information on this study and my recommendations read the article above.

These statements have not been evaluated by the Food and Drug Administration. This information is not intended to diagnose, treat, cure or prevent any disease.

______________________________________________________________________________

My posts and “Health Tips From the Professor” articles carefully avoid claims about any brand of supplement or manufacturer of supplements. However, I am often asked by representatives of supplement companies if they can share them with their customers.

My answer is, “Yes, as long as you share only the article without any additions or alterations. In particular, you should avoid adding any mention of your company or your company’s products. If you were to do that, you could be making what the FTC and FDA consider a “misleading health claim” that could result in legal action against you and the company you represent.

For more detail about FTC regulations for health claims, see this link.

https://www.ftc.gov/business-guidance/resources/health-products-compliance-guidance

_______________________________________________________________________

About The Author 

Dr. Chaney has a BS in Chemistry from Duke University and a PhD in Biochemistry from UCLA. He is Professor Emeritus from the University of North Carolina where he taught biochemistry and nutrition to medical and dental students for 40 years.  Dr. Chaney won numerous teaching awards at UNC, including the Academy of Educators “Excellence in Teaching Lifetime Achievement Award”.

Dr Chaney also ran an active cancer research program at UNC and published over 100 scientific articles and reviews in peer-reviewed scientific journals. In addition, he authored two chapters on nutrition in one of the leading biochemistry text books for medical students.

Since retiring from the University of North Carolina, he has been writing a weekly health blog called “Health Tips From the Professor”. He has also written two best-selling books, “Slaying the Food Myths” and “Slaying the Supplement Myths”. And most recently he has created an online lifestyle change course, “Create Your Personal Health Zone”. For more information visit https://chaneyhealth.com.

For the past 45 years Dr. Chaney and his wife Suzanne have been helping people improve their health holistically through a combination of good diet, exercise, weight control and appropriate supplementation.

What Kind Of Protein Is Best For Strength?

What Kind Of Protein Is Best For You?

Author: Dr. Stephen Chaney 

Sport DrinkEvery bodybuilder “knows” that whey is the best protein for building strong muscles. After all, it:

  • Is absorbed more rapidly than some other proteins.
  • Contains all nine essential amino acids.
  • Is naturally rich in leucine, a branched chain amino acid that stimulates increased muscle mass.

However, as someone who is not a vegan but who follows the vegan literature, I frequently come across testimonials from bodybuilders and elite athletes who say they get all the strength and muscle mass they need from plant proteins.

I’ve always assumed they must have dietitians designing the perfect plant protein diet for them. But a recent study surprised me. It challenged that assumption.

Before I talk about this study, let me change our focus. Most of us will never be bodybuilders or elite athletes, but all of us face a common challenge. We all tend to lose muscle mass as we age, something referred to as sarcopenia. I have discussed this in a previous issue of “Health Tips From the Professor”.

Simply put, sarcopenia results in:

  • Loss of muscle strength. Even the simple act of picking up a grandchild or a bag of groceries can become problematic.
  • Increased risk of falls and fractures.
  • Lower quality of life.

Sarcopenia is a major health issue for those of us in our golden years. If you are younger, it is a concern for your parents or grandparents. Sarcopenia is a health issue that affects everyone.

In my previous article I discussed the role of adequate protein intake and exercise in preventing age-related sarcopenia. But I did not discuss what kind of protein was best for preventing muscle loss, and the frailty that comes with it, as we age.

The article (EA Struijk et al, Journal of Cachexia, Sarcopenia and Muscle, 13: 1752-1761, 2022) I will discuss today suggests that plant protein is best for preventing frailty in women as they age. It’s a surprising conclusion, so join me as I evaluate this study.

How Was This Study Done?

Clinical StudyThe data for this study came from the Nurses Health Study which started in 1976 with 121,700 women nurses and is still ongoing. This study followed 85, 871 female nurses for an average of 22 years starting when they were 60.

Food frequency questionnaires were administered to the participants in the study every four years starting in 1980. The questionnaires were used to calculate:

  • Total calories consumed.
  • Percent of calories from protein, carbohydrate, and fat.
  • Percent of calories from different kinds of protein.
  • The overall quality of the diet.
  • Saturated fat, polyunsaturated fat, cholesterol, and alcohol intake.

For this study the investigators used the cumulative average values from all questionnaires completed by participants in the study from age 60 until the onset of frailty.

Frailty was assessed every four years starting in 1992 using something called the FRAIL scale. The FRAIL scale defines frailty based on five self-reported criteria: fatigue, low strength, reduced aerobic capacity, having 5 or more chronic illnesses, and recent significant unintentional weight loss.

  • It is important to note that strength is only one of the five criteria used to identify frailty, although decreased muscle mass can contribute to lack of energy and reduced aerobic activity.
  • It is also worth pointing out that multiple studies have shown that primarily plant-based diets are associated with a decrease in chronic diseases.

I will come back to both of these points when I discuss the results of this study.

What Kind Of Protein Is Best For Strength? 

I will start with the “big picture” results from this study and then cover some of the important details.

Average intake of:

  • Total protein was 18.3% of calories consumed.
  • Animal protein was 13.3% of calories consumed.
  • Plant protein was 5.0% of calories consumed.
  • Dairy protein was 3.8% of calories consumed.

When protein intake was divided into quintiles (5 equal parts) and women consuming the most protein were compared to those consuming the least protein for an average of 22 years:

  • Those consuming the most total protein had a 7% increased risk of developing frailty.
  • Those consuming the most animal protein had a 7% increased risk of developing frailty. (It is perhaps not surprising that the results were essentially the same for total and animal protein since animal protein was 73% of the total protein consumed by women in this study.)
  • Those consuming the most plant protein had a 14% decreased risk of developing frailty.
  • Consumption of dairy protein did not affect frailty.

Substituting as little as 5% of calories of plant protein for:

  • Dairy protein decreased the risk of developing frailty by 32%.
  • Animal protein decreased the risk of developing frailty by 38%.
  • Non-dairy animal protein (meat, fish, and eggs) decreased the risk of developing frailty by 42%.

In addition, substituting as little as 5% of calories of dairy protein for non-dairy animal protein decreased the risk of developing frailty by 14%.

But, as I said above, the frailty scale used in this study included the criteria of developing 5 or more chronic illnesses, and long-term consumption of plant protein is known to reduce the risk of developing chronic illnesses. So, it is important to break the study down into its component parts. When that was done the statistically significant results were:

  • Those consuming the most total protein had a 7% increased risk of low strength and a 25% increased risk of developing 5 or more chronic diseases.
  • Those consuming the most animal protein had a 9% increased risk of low strength and a 35% increased risk of developing 5 or more chronic diseases.
  • Those consuming the most plant protein had an 18% decreased risk of low strength. (It is interesting to note that plant protein consumption did not have a statistically significant effect on the development of chronic diseases in this study. That suggests that the “protective” effect of plant protein may simply be due to the absence of animal protein from the diet.)
  • Consumption of dairy protein did not affect any of the frailty criteria.

Finally, prevention of strength loss due to age-related sarcopenia is known to require exercise as well as adequate protein intake.

So, it was somewhat surprising that no difference in the association between protein intake and frailty was seen in women with high physical activity compared with those with lower physical activity levels. However, this may be because the range in activity level between the women in this study was relatively small. There didn’t appear to be a significant number of “gym rats” among the women in this study.

What Kind Of Protein Is Best For You?

Questioning WomanOne take-away from this study is clear. If you are a woman and want to minimize sarcopenia (loss of muscle mass and strength as you age), plant protein is an excellent choice.

  • A variety of plant proteins is best, so you get all the essential amino acids.
  • You don’t need to become a vegan. This study showed that replacing as little as 5% of your calories from animal protein with plant protein can have a significant benefit. Any healthy primarily plant-based diet will do.
  • This study enrolled only women aged 60 or above, so we don’t know whether the results apply to men or to younger women.

We don’t know why plant protein is better than animal protein at preventing age-related sarcopenia.

  • It could be because primarily plant-based diets are anti-inflammatory, and inflammation plays a role in sarcopenia.
  • Or it could be because primarily plant-based diets reduced the risk of chronic diseases, and chronic diseases can lead to loss of strength.

To be clear, this is a study that focuses on the type of protein that is best for long-term health and strength as we age. This is not a study of the best protein for increasing muscle mass following a workout.

  • Multiple studies show that whey protein can be a good post-workout choice.
  • However, other studies show that plant protein can also be a good post-workout choice if extra leucine is added to make it equivalent to whey protein in terms of leucine content.

The Bottom Line

You have probably heard that it is all downhill after age 30. But it doesn’t have to be.

One of the downhill slopes we all face is something called sarcopenia (age-related muscle loss). The resulting loss of strength and agility can severely impact our quality of life in our golden years.

We can prevent sarcopenia with the combination of a high protein diet and resistance training (weight bearing exercise).

But what kind of protein is best? In this issue of “Health Tips From the Professor” I review a large, well-designed study that suggests plant protein is the best choice for women if they wish to reduce age-related muscle loss and the weakness that comes with it.

For more details about the study and what it means for you, read the article above.

These statements have not been evaluated by the Food and Drug Administration. This information is not intended to diagnose, treat, cure, or prevent any disease.

 ______________________________________________________________________________

My posts and “Health Tips From the Professor” articles carefully avoid claims about any brand of supplement or manufacturer of supplements. However, I am often asked by representatives of supplement companies if they can share them with their customers.

My answer is, “Yes, as long as you share only the article without any additions or alterations. In particular, you should avoid adding any mention of your company or your company’s products. If you were to do that, you could be making what the FTC and FDA consider a “misleading health claim” that could result in legal action against you and the company you represent.

For more detail about FTC regulations for health claims, see this link.

https://www.ftc.gov/business-guidance/resources/health-products-compliance-guidance

 _____________________________________________________________________

About The Author

Dr. Chaney has a BS in Chemistry from Duke University and a PhD in Biochemistry from UCLA. He is Professor Emeritus from the University of North Carolina where he taught biochemistry and nutrition to medical and dental students for 40 years.  Dr. Chaney won numerous teaching awards at UNC, including the Academy of Educators “Excellence in Teaching Lifetime Achievement Award”. Dr Chaney also ran an active cancer research program at UNC and published over 100 scientific articles and reviews in peer-reviewed scientific journals. In addition, he authored two chapters on nutrition in one of the leading biochemistry text books for medical students.

Since retiring from the University of North Carolina, he has been writing a weekly health blog called “Health Tips From the Professor”. He has also written two best-selling books, “Slaying the Food Myths” and “Slaying the Supplement Myths”. And most recently he has created an online lifestyle change course, “Create Your Personal Health Zone”. For more information visit https://chaneyhealth.com.

For the past 45 years Dr. Chaney and his wife Suzanne have been helping people improve their health holistically through a combination of good diet, exercise, weight control and appropriate supplementation.

Does Low Vitamin D Make You Weak?

Why Is Vitamin D Research So Controversial?

Author: Dr. Stephen Chaney

vitamin dMillions of Americans lose muscle strength as they age, something called sarcopenia. This is not a trivial matter. Loss of muscle mass:

  • Leads to loss of mobility. It can also make it difficult to do simple things like lifting your grandchild or carrying a bag of groceries.
  • Increases your risk of falling. This often leads to serious fracture which increases your of dying prematurely. In fact, bone fractures increase your risk of dying by 3-fold or more. Even in those who recover their mobility and quality of life may never be the same.
  • Lowers your metabolic rate. This increases your risk of obesity and all the diseases that are associated with obesity.

Loss of muscle strength as we age is preventable. There are several things we can do to preserve muscle strength as we age, but in today’s article I will focus on the effect of vitamin D on muscle strength.

What if something as simple as preventing vitamin D deficiency could improve muscle strength as we age? That idea has been around for a decade or more. But, for reasons I will detail below, it has proven controversial. Let me start by sharing a recent study on vitamin D and muscle strength (N Aspell et al, Clinical Investigations in Ageing, volume 2019:14, pages 1751-1761).

How Was The Study Done?

Clinical StudyThe data for this study came from 4157 adults who were enrolled in the English Longitudinal Study On Aging. Participants in this study were all over the age of 60 and were still living in their own homes. The general characteristics of the study population were:

  • Their average age was 69.8 with 45% male and 55% female.
  • While 76% of the participants rated their health as “good” or above
    • 73% were overweight or obese.
    • 54% had a longstanding disease that limited mobility.
    • 29% were taking multiple medications.

Serum 25-hydroxy vitamin D levels were determined as a measure of vitamin D status.

  • 22% of the participants were vitamin D deficient (<30 nmol/L 25-hydroxy vitamin D).
  • 34% of the participants were vitamin D insufficient (between 30 and 50 nmol/L 25-hydroxy vitamin D).
  • 46% of the participants had adequate vitamin D status (>50 nmol/L 25-hydroxy vitamin D).

Muscle strength was assessed by a handgrip strength test with the dominant hand. Muscle performance was assessed with something called the short physical performance battery (SPPB), consisting of a walking speed test, a repeated chair raise test, and a balance test.

Does Low Vitamin D Make You Weak?

When the data on handgrip strength were analyzed:

  • Only 22% of the participants who had adequate vitamin D status had low handgrip strength.
  • 40% of participants who were vitamin D deficient had low handgrip strength. That’s almost a 2-fold difference.
  • Handgrip strength increased linearly with vitamin D status.
    • The relationship between vitamin D status and handgrip strength was highly significant (p<001).
    • The beneficial effect of vitamin D status on handgrip strength plateaued at around 55-69 nmol/L 25-hydroxy vitamin D. In other words, you need adequate vitamin D status to support muscle strength, but higher levels provide no additional benefit.

When the data on muscle performance (the SPPB test) were analyzed:

  • Only 8% of the participants who had adequate vitamin D status scored low on this test.
  • 25% of participants who were vitamin D deficient scored low on this test. That’s a 3-fold difference.
  • Muscle performance also increased linearly with vitamin D status.
    • The relationship between vitamin D status and muscle performance was also highly significant (p<001).
    • The beneficial effect of vitamin D status on muscle performance also plateaued at around 55-69 nmol/L 25-hydroxy vitamin D.

The authors concluded: “Vitamin D deficiency was associated with impaired muscle strength and performance in a large study of community-dwelling older people. It is generally accepted that vitamin D deficiency should be reversed to prevent bone disease. This strategy may also protect skeletal muscle function in aging.”

Why Is Vitamin D Research So Controversial?

ArgumentYou can be forgiven if you are saying to yourself: “I’ve heard this sort of thing before. I see a blog or headline claiming that vitamin D has a certain benefit, but it’s usually followed by later headlines saying those claims are false. Why can’t the experts agree? Is all vitamin D research bogus?”

The relationship between vitamin D status and muscle strength is no different.

  • Many, but not all, studies looking at the association between vitamin D status and muscle strength find that vitamin D status affects muscle strength.
  • However, many randomized, placebo-controlled clinical trials looking at the effect of vitamin D supplementation on muscle strength have come up empty.

A meta-analysis (L Rejnmark, Therapeutic Advances in Chronic Disease, 2: 25-37, 2011) of randomized, placebo-controlled clinical trials of vitamin D supplementation and muscle strength provides insight as to why so many of them come up empty.

The meta-analysis combined data from 16 clinical trials. The conclusions were similar to what other meta-analyses have found:

  • Seven of the studies showed a benefit of vitamin D supplementation on muscle strength. Nine did not.
  • When the data from all 16 studies were combined, there was only a slight beneficial effect of vitamin D supplementation on muscle strength.

However, it was in the discussion that the reason for these discrepancies became apparent. There were three major deficiencies in study design that were responsible for the discrepancies.

1) There was a huge difference in study design.

  • The subjects were of different ages, genders, and ethnicity.
  • The dose of vitamin D supplementation varied.
  • Different measures of muscle strength and performance were used.

Until the scientific and medical community agree on a standardized study design it will be difficult to obtain consistent results.Garbage In Garbage Out

While this deficiency explains the variation in outcomes from study to study, there are two other deficiencies in study design that explain why many of the studies failed to find an effect of vitamin D on muscle strength. I call this “Garbage In, Garbage Out”. Simply put, if the study has design flaws, it may be incapable of detecting a positive effect of vitamin D on muscle strength.

2) Many of the studies did not measure vitamin D status of the participants at the beginning of the study.

  • The results of the study described above show that additional vitamin D will be of little benefit for anyone who starts the study with an adequate vitamin D status.
  • In the study above 46% of the participants had adequate vitamin D status. This is typical for the elderly community. When almost 50% of the participants in a study have adequate vitamin D status at the beginning of a study it becomes almost impossible to demonstrate a beneficial effect of vitamin D supplementation on any outcome.

It is essential that future studies of vitamin D supplementation focus on participants who have low vitamin D status. Otherwise, you are almost guaranteeing a negative outcome.

3) Most of the studies ignored the fact that vitamin D status is only one of three factors that are essential for muscle strength.

  • In the case of muscle strength, especially in the elderly, the three essentials are vitamin D, protein, and exercise. All three are needed to maintain or increase muscle strength. Simply put, if one is missing, the other two will have little or no effect on muscle strength. Unfortunately, you cannot assume that exercise and protein intake are adequate in older Americans:
  • Many older adults don’t get enough exercise because of physical limitations.

Unfortunately, many clinical studies on the effect of vitamin D supplementation and muscle strength fail to include exercise and adequate protein intake in the study. Such clinical trials are doomed to failure.

Now you know why vitamin D research is so controversial. Until the scientific and medical community get their act together and perform better designed experiments, vitamin D research will continue to be controversial and confusing.

What Does This Mean For You?

Old Man Lifting WeightsLoss of muscle mass as we age is not a trivial matter. As described above, it:

  • Leads to loss of mobility.
  • Increases your risk of falling. This often leads to serious fractures which increase your risk of disability and death.
  • Lowers your metabolic rate, which increases your risk of obesity and obesity-related diseases.

So, what can you do prevent loss of muscle mass as you age? The answer is simple:

  • Aim for 25-30 grams of high-quality protein in each meal.
    • That protein can come from meat, fish, eggs, or vegetable sources such as beans, nuts, and seeds.
    • That doesn’t mean you need to consume an 8-ounce steak or a half chicken. 3-4 ounces is plenty.
    • However, it does mean you can’t subsist on green salads and leafy greens alone. They are healthy, but you need to include a good protein source if you are going to meet your protein needs.
  • Aim for 150 minutes of moderate intensity exercise per week.
    • At least half of that exercise should be resistance exercise (lifting weights, for example).
    • If you have physical limitations, consult your doctor and work with a physical therapist or personal trainer to design resistance exercises you can do.
    • Aim for a variety of resistance exercises. You will only strengthen the muscles you exercise.
  • Aim for an adequate vitamin D status.
    • Start with a multivitamin containing at least 800 IU of vitamin D3.
    • Because there is large variation in the efficiency with which we convert vitamin D to 25-hydroxy vitamin D, you should get your serum 25-hydroxyvitamin D tested on a yearly basis. Your health professional can tell you if you need to take larger amounts of vitamin D3.
    • This study suggests that a serum 25-hydroxy vitamin D level of 55-69 nmol/L is optimal, and higher levels provide no additional benefit. That means there is no need to take mega-doses of vitamin D3 unless directed by your health professional.

The Bottom Line 

A recent study looked at the effect of vitamin D status on muscle strength and performance in a healthy population with an average age of 69.

When they looked at handgrip strength:

  • Only 22% of the participants with an adequate vitamin D status had low handgrip strength.
  • 40% of participants who were vitamin D deficient had low handgrip strength. That’s almost a 2-fold difference.
  • Handgrip strength increased linearly with vitamin D status.

When they looked at muscle performance:

  • Only 8% of the participants with an adequate vitamin D status scored low on this test.
  • 25% of participants who were vitamin D deficient scored low on this test. That’s a 3-fold difference.
  • Muscle performance also increased linearly with vitamin D status.

The authors concluded: “Vitamin D deficiency was associated with impaired muscle strength and performance in a large study of community-dwelling older people. It is generally accepted that vitamin D deficiency should be reversed to prevent bone disease. This strategy may also protect skeletal muscle function in aging.”

If we look at the research more broadly, there are three factors that are essential for maintaining muscle mass as we age: exercise, protein, and vitamin D. Therefore, my recommendations are to:

1)  Aim for 25-30 grams of high-quality protein in each meal.

2) Aim for 150 minutes of moderate intensity exercise per week. At least half of that exercise should be resistance exercise.

3) Aim for an adequate vitamin D status (>50 nmol/L of serum 25-hydroxy vitamin D). A good place to start is with a multivitamin providing at least 800 IU of vitamin D3.

For more details on my recommendations and a discussion of why studies on vitamin D supplementation are often confusing, read the article above.

These statements have not been evaluated by the Food and Drug Administration. This information is not intended to diagnose, treat, cure or prevent any disease

 

Do Collagen Supplements Build Muscle?

Could Collagen Supplements Make You Leaner? 

Author: Dr. Stephen Chaney

Sports SupplementsCollagen supplements have been considered “vanity products”. Their largest market is people who want to have younger, more beautiful skin. And for many people, collagen delivers on this promise.

However, collagen plays many other roles in the body. It also helps rebuild tendons and ligaments. Many people take collagen supplements to reduce joint pain.

But could collagen supplements coupled with resistance training also build muscle and reduce fat? If so, that would be huge.

A recent study (D Zdzieblik et at, British Journal of Nutrition, 114: 1237-1245, 2015) suggested collagen supplements may do just that. This study showed that a collagen supplement plus resistance training increased lean muscle mass and decreased fat mass in elderly men (average age = 72).

If this finding is duplicated in future studies, it has significant health implications. Both men and women in their 70s lose muscle mass at a rapid rate (a process called sarcopenia). Anything that slows or reverses this process has the potential to extend high quality life and prolong their golden years.

But what about younger adults? Could a collagen supplement plus resistance training also help them build muscle and lose fat? This study (D Zdzieblik et at, International Journal of Environmental Research and Public Health, 18: 4837-4855, 2021) was designed to answer that question.

It was a randomized, placebo-controlled study comparing 15 g of collagen peptides with 15 g of whey protein, and a placebo (silicon dioxide).

How Was This Study Done?

couch potatoThe study recruited 120 middle-aged (average age = 50), overweight (average BMI = 30) men who were untrained (<60 minutes of exercise per week over the previous year). [In other words, the study recruited middle-aged couch-potatoes.]

The participants were asked to fill out a three-day diet analysis at the beginning and end of the 12-week study with the assistance of a nutritionist.

  • Average caloric intake was 2,600 calories/day.
  • Average protein intake was 104 grams/day. That is 30% higher than the recommended protein intake for men of that age and weight.
  • The macronutrient content of the diet was 16% protein, 37% fat, and 43% carbohydrate.
  • These values were not significantly different between groups and did not change during the study.

All participants participated in a one-hour training program three times per week. The training began with a 10-minute cardio exercise to warm up. That was followed by a three-set program consisting of horizontal leg presses (both legs), reverse crunches, lat-pull exercise, sit-ups, and chest presses with 1 to 2 min rest periods between sets. The intensity of exercise was gradually increased over the 12-week study.

The participants were randomly divided into three groups. After each workout they were given sachets containing 15 g of collagen peptides, 15 g of whey isolate, or 15 g of silicon dioxide (placebo). They were instructed to dissolve the powder in 8 ounces of water and drink it within one hour of the workout. They were also given the same sachets and instructed to take them at the same time of day for the days they were not working out.

Finally, the participants were instructed not to change their diet or physical activity apart from the intake of the powder in the sachets they were given and the one-hour training sessions.

Do Collagen Supplements Build Muscle?

Collagen Supplement & Muscle MassAll three groups had statistically significant:

  • Increases in percent lean muscle mass.
  • Decreases in percent fat mass.
  • Increases in leg muscle strength.

No surprises here. If you take a group of middle-aged couch-potatoes and put them in a strength training program, you will see increases in lean muscle mass, decreases in fat mass, and increases in muscle strength.

The real question was what was the effect of the collagen and whey protein supplements? This is where the results got really interesting.

  • The collagen peptide supplement gave a significantly greater increase in lean muscle mass and decrease in fat mass than the placebo. The increase in leg muscle strength was also greater than the placebo, but this difference was not statistically significant.
  • The whey protein supplement also increased lean muscle mass and decreased fat mass compared to the placebo, but these differences were not statistically different.

In other words, at the doses used in this study (see next section for discussion), the collagen supplement worked better than the whey protein supplement. Here is the actual data from the study:

  • Increase in percent lean muscle mass: collagen supplement = 7.4%, whey protein supplement = 5.8%. placebo = 5.0%.
  • Decrease in percent fat mass: collagen supplement = 15%, whey protein supplement = 11.5%, placebo = 10%.

In the words of the authors, “In conclusion, collagen peptide supplementation combined with resistance training was associated with a significantly greater increase in fat free mass and a decrease in fat mass compared with placebo. Resistance training combined with whey protein also had a positive impact on body composition, but the respective effects were more pronounced following the collagen peptide administration.”

Could Collagen Supplements Make You Leaner?

strengths-weaknessesThis study leaves lots of questions. Let me handle the main ones here.

What Are The Strengths and Weaknesses Of The Study?

The strengths are obvious. This was a well-design, randomized, placebo-controlled clinical trial, which is the gold standard for determining the efficacy of a treatment.

The weaknesses are also obvious. This was a very small clinical study. There is one previous study that showed the same benefit of collagen in an older age group. However, both studies were published by the same group of scientists. And these scientists were funded by the manufacturer of the collagen product used in the study. More and larger studies performed by other laboratories are needed to confirm this finding.

How Do Resistance Exercise, Whey Protein, And Collagen Stimulate Muscle Growth?

Muscle growth is stimulated by a regulatory pathway called mTOR that (among other things) regulates protein Weight Trainingsynthesis in muscle cells. For the purposes of this article, I will discuss 3 mechanisms for activating mTOR and increasing muscle protein synthesis.

#1: Resistance exercise (weight training) activates mTOR. That should come as no surprise. The main reason people do weight training is to increase strength and muscle mass. mTOR is the pathway that makes this possible.

#2: Whey protein is rich in the essential amino acid leucine, and leucine also stimulates the mTOR pathway.

  • Leucine is one of three branched chain amino acids. While all three branched chain amino acids have been traditionally credited with stimulating muscle protein synthesis, recent research has shown that only leucine is needed. The other two branched chain amino acids just play a supportive role. You only need enough of the them to make a complete protein.
  • While whey protein gets all the attention in the sports world, any complete protein with high levels of leucine has the same effect.
  • The effect of leucine and resistance training on the mTOR pathway are additive. That is why whey and other leucine-rich proteins enhance the effect of resistance exercise on both muscle mass and strength.

#3: Collagen does not contain enough leucine to activate the mTOR pathway. However, the authors have proposed another mechanism to account for collagen activation of the mTOR pathway.

  • Most proteins we eat are digested to their individual amino acids before they are absorbed. However, collagen is rich in an unusual amino acid called hydroxyproline that makes collagen resistant to our digestive enzymes.
  • Thus, collagen is not digested to individual amino acids, but to small peptides that are absorbed from our intestine.
  • One of these breakdown products, a dipeptide composed of glycine and hydroxyproline, has been shown to stimulate the mTOR pathway.

While this mechanism has not been proven, collagen does appear to enhance the effect of resistance exercise on both muscle mass and strength.

Collagen Only Has 8 Essential Amino Acids. How Could It Stimulate The Synthesis Of Muscle Protein, Which Requires 9 Essential Amino Acids?

Question MarkThe answer is simple. The people in this study were consuming 30% more than the recommended amount of protein in their diet in addition to the collagen supplement. They already had all the essential amino acids needed to synthesize muscle protein. The collagen supplement simply stimulated the rate of muscle protein synthesis by activating the mTOR pathway.

However, there are situations in which the 9th essential amino acid could become important for muscle protein synthesis. Here are two examples

  • Vegans and strict vegetarians might not be getting enough protein in their diet. As I pointed out in a previous article vegan “experts” know how to get enough protein from their diet, but many vegan “novices” do not.
  • Older Americans are also at risk. They need extra protein in their diet to prevent sarcopenia (muscle loss) as they age. And some of them are on restrictive diets, either because of the latest fad or because of loss of income and/or mobility.

Why Did The Collagen Supplement Work Better Than Whey Protein In This Experiment? 

Again, the answer is simple. Both collagen and leucine-rich proteins like whey enhance muscle protein synthesis by activating the mTOR pathway (see above). This study used the same amount of protein (15 g/day) for both collagen supplement and the whey protein supplement.

While 15 g/day appears to be optimal for the collagen supplement, the authors pointed out that previous studies suggest that the optimal dose for whey protein is closer to 20 g/day for middle-aged men.

So, I would ignore the apparent difference in effectiveness of the collagen and whey protein supplements.

The important conclusion is that both collagen and leucine-rich proteins like whey enhance the effect of resistance exercise on lean muscle mass to a similar extent. But they appear to do so by slightly different mechanisms.

What Does This Mean For You?

This study is intriguing. It suggests that collagen may have some tricks up its sleeve we didn’t know about.

  • It may do more than give you a healthy, youthful looking skin.
  • It may do more than help with achy joints.
  • Coupled with resistance exercise it may also help you increase muscle mass and reduce fat mass. It may make you leaner.

The Bottom Line

Collagen supplements have been considered “vanity products”. Their largest market is people who want to have younger, more beautiful skin. And for many people, collagen delivers on this promise.

However, collagen plays many other roles in the body. It also helps rebuild tendons and ligaments. Many people take collagen supplements to reduce joint pain.

But collagen may have other tricks up its sleeve. A recent study suggests that collagen supplements may enhance the effect of resistance exercise on increased muscle mass and reduced fat mass. It may make you leaner.

The study also concluded that both collagen and whey protein enhance the effect of resistance exercise on lean muscle mass to a similar extent. But they appear to do so by slightly different mechanisms.

Let me be clear. I am not recommending you take a collagen supplement to help you build muscle mass. I consider these results as preliminary, and we have good evidence that leucine-rich proteins plus resistance exercise helps build muscle mass. 

However, if you are taking a collagen supplement for another reason and are working out, this could be an unexpected benefit.

For more details about this study and how collagen supplements may increase muscle mass, read the article above.

These statements have not been evaluated by the Food and Drug Administration. This information is not intended to diagnose, treat, cure, or prevent any disease.

Does Vitamin D Affect Muscle Strength?

Why Is Vitamin D Research So Controversial?

vitamin dMost people lose muscle strength as they age, something called sarcopenia. This is not a trivial matter. Loss of muscle mass:

  • Leads to loss of mobility. It can also make it difficult to do simple things like lifting your grandchild or carrying a bag of groceries.
  • Increases your risk of falling. This often leads to serious fracture which increases your of dying prematurely. In fact, bone fractures increase your risk of dying by 3-fold or more. Even in those who recover their mobility and quality of life may never be the same.
  • Lowers your metabolic rate. This increases your risk of obesity and all the diseases that are associated with obesity.

Loss of muscle strength as we age is preventable. There are several things we can do to preserve muscle strength as we age, but in today’s article I will focus on the effect of vitamin D on muscle strength.

What if something as simple as preventing vitamin D deficiency could improve muscle strength as we age? That idea has been around for a decade or more. But, for reasons I will detail below, it has proven controversial. Let me start by sharing the latest study on vitamin D and muscle strength (N Aspell et al, Clinical Investigations in Ageing, volume 2019:14, pages 1751-1761).

How Was The Study Done?

Clinical StudyThe data for this study came from 4157 adults who were enrolled in the English Longitudinal Study On Aging. Participants in this study were all over the age of 60 and were still living in their own homes. The general characteristics of the study population were:

  • Their average age was 69.8 with 45% male and 55% female.
  • While 76% of the participants rated their health as “good” or above
    • 73% were overweight or obese.
    • 54% had a longstanding disease that limited mobility.
    • 29% were taking multiple medications.

Serum 25-hydroxy vitamin D levels were determined as a measure of vitamin D status.

  • 22% of the participants were vitamin D deficient (<30 nmol/L 25-hydroxy vitamin D).
  • 34% of the participants were vitamin D insufficient (between 30 and 50 nmol/L 25-hydroxy vitamin D).
  • 46% of the participants had adequate vitamin D status (>50 nmol/L 25-hydroxy vitamin D).

Muscle strength was assessed by a handgrip strength test with the dominant hand. Muscle performance was assessed with something called the short physical performance battery (SPPB), consisting of a walking speed test, a repeated chair raise test, and a balance test.

Does Vitamin D Affect Muscle Strength?

When the data on handgrip strength were analyzed:

  • Only 22% of the participants who had adequate vitamin D status had low handgrip strength.
  • 40% of participants who were vitamin D deficient had low handgrip strength. That’s almost a 2-fold difference.
  • Handgrip strength increased linearly with vitamin D status.
    • The relationship between vitamin D status and handgrip strength was highly significant (p<001).
    • The beneficial effect of vitamin D status on handgrip strength plateaued at around 55-69 nmol/L 25-hydroxy vitamin D. In other words, you need adequate vitamin D status to support muscle strength, but higher levels provide no additional benefit.

When the data on muscle performance (the SPPB test) were analyzed:

  • Only 8% of the participants who had adequate vitamin D status scored low on this test.
  • 25% of participants who were vitamin D deficient scored low on this test. That’s a 3-fold difference.
  • Muscle performance also increased linearly with vitamin D status.
    • The relationship between vitamin D status and muscle performance was also highly significant (p<001).
    • The beneficial effect of vitamin D status on muscle performance also plateaued at around 55-69 nmol/L 25-hydroxy vitamin D.

The authors concluded: “Vitamin D deficiency was associated with impaired muscle strength and performance in a large study of community-dwelling older people. It is generally accepted that vitamin D deficiency should be reversed to prevent bone disease. This strategy may also protect skeletal muscle function in aging.”

Why Is Vitamin D Research So Controversial?

ArgumentYou can be forgiven if you are saying to yourself: “I’ve heard this sort of thing before. I see a blog or headline claiming that vitamin D has a certain benefit, but it’s usually followed by later headlines saying those claims are false. Why can’t the experts agree? Is all vitamin D research bogus?”

The relationship between vitamin D status and muscle strength is no different.

  • Most, but not all, studies looking at the association between vitamin D status and muscle strength find that vitamin D status affects muscle strength.
  • However, many randomized, placebo-controlled clinical trials looking at the effect of vitamin D supplementation on muscle strength have come up empty.

A meta-analysis (L Rejnmark, Therapeutic Advances in Chronic Disease, 2: 25-37, 2011) of randomized, placebo-controlled clinical trials of vitamin D supplementation and muscle strength provides insight as to why so many of them come up empty.

The meta-analysis combined data from 16 clinical trials. The conclusions were similar to what other meta-analyses have found:

  • Seven of the studies showed a benefit of vitamin D supplementation on muscle strength. Nine did not.
  • When the data from all 16 studies were combined, there was only a slight beneficial effect of vitamin D supplementation on muscle strength.

However, it was in the discussion that the reason for these discrepancies became apparent. There were three major deficiencies in study design that were responsible for the discrepancies.

1) There was a huge difference in study design.

    • The subjects were of different ages, genders, and ethnicities.
    • The dose of vitamin D supplementation varied.
    • Different measures of muscle strength and performance were used.

Until the scientific and medical community agree on a standardized study design it will be difficult to obtain consistent results.

While this deficiency explains the variation in outcomes from study to study, there are two other deficiencies in Garbage In Garbage Outstudy design that explain why many of the studies failed to find an effect of vitamin D on muscle strength. I call this “Garbage In, Garbage Out”. Simply put, if the study has design flaws, it may be incapable of detecting a positive effect of vitamin D on muscle strength.

2) Many of the studies did not measure vitamin D status of the participants at the beginning of the study.

    • The results of the study described above show that additional vitamin D will be of little benefit for anyone who starts the study with an adequate vitamin D status.
    • In the study above 46% of the participants had adequate vitamin D status. This is typical for the elderly community. When almost 50% of the participants in a study have adequate vitamin D status at the beginning of a study it becomes almost impossible to demonstrate a beneficial effect of vitamin D supplementation on any outcome.

It is essential that future studies of vitamin D supplementation start with participants who have low vitamin D status. Otherwise, you are almost guaranteeing a negative outcome.

3) Most of the studies ignored the fact that vitamin D status is only one of three factors that are essential for muscle strength.

    • In the case of muscle strength, especially in the elderly, the three essentials are vitamin D, protein, and exercise. All three are needed to maintain or increase muscle strength. Simply put, if one is missing, the other two will have little or no effect on muscle strength. Unfortunately, you cannot assume that exercise and protein intake are adequate in older Americans:
      • Many older adults don’t get enough exercise because of physical limitations.

Unfortunately, many clinical studies on the effect of vitamin D supplementation and muscle strength fail to include exercise and adequate protein intake in the study. Such clinical trials are doomed to failure.

Now you know why vitamin D research is so controversial. Until the scientific and medical community get their act together and perform better designed experiments, vitamin D research will continue to be controversial and confusing.

What Does This Mean For You?

Old Man Lifting WeightsLoss of muscle mass as we age is not a trivial matter. As described above, it:

  • Leads to loss of mobility.
  • Increases your risk of falling. This often leads to serious fracture which increase your risk of disability and death.
  • Lowers your metabolic rate, which increases your risk of obesity and obesity-related diseases.

So, what can you do prevent loss of muscle mass as you age? The answer is simple:

1) Aim for 25-30 grams of high-quality protein in each meal.

    • That protein can come from meat, fish, eggs, or legumes.
    • That doesn’t mean you need to consume an 8-ounce steak or a half chicken. 3-4 ounces is plenty.
    • However, it does mean you can’t subsist on green salads and leafy greens alone. They are healthy, but you need to include a good protein source if you are going to meet your protein needs.

2) Aim for 150 minutes of moderate intensity exercise per week.

    • At least half of that exercise should be resistance exercise (lifting weights, for example).
    • If you have physical limitations, consult your doctor and a physical therapist or personal trainer to design resistance exercises you can do.
    • Aim for a variety of resistance exercises. You will only strengthen the muscles you exercise.

3) Aim for an adequate vitamin D status.

    • Start with a multivitamin containing at least 800 IU of vitamin D3.
    • Because there is large variation in the efficiency with which we convert vitamin D to 25-hydroxy vitamin D, you should get your serum 25-hydroxyvitamin D tested on a yearly basis. Your health professional can tell you if you need to take larger amounts of vitamin D3.
    • This study suggests that a serum 25-hydroxy vitamin D level of 55-69 nmol/L is optimal, and higher levels provide no additional benefit. That means there is no need to take mega-doses of vitamin D3 unless directed by your health professional.

The Bottom Line

A recent study looked at the effect of vitamin D status on muscle strength and performance in a healthy population with an average age of 69.

When they looked at handgrip strength:

  • Only 22% of the participants with an adequate vitamin D status had low handgrip strength.
  • 40% of participants who were vitamin D deficient had low handgrip strength. That’s almost a 2-fold difference.
  • Handgrip strength increased linearly with vitamin D status.

When they looked at muscle performance:

  • Only 8% of the participants with an adequate vitamin D status scored low on this test.
  • 25% of participants who were vitamin D deficient scored low on this test. That’s a 3-fold difference.
  • Muscle performance also increased linearly with vitamin D status.

The authors concluded: “Vitamin D deficiency was associated with impaired muscle strength and performance in a large study of community-dwelling older people. It is generally accepted that vitamin D deficiency should be reversed to prevent bone disease. This strategy may also protect skeletal muscle function in aging.”

If we look at the research more broadly, there are three factors that are essential for maintaining muscle mass as we age: exercise, protein, and vitamin D. Therefore, my recommendations are to:

1)  Aim for 25-30 grams of high-quality protein in each meal.

2) Aim for 150 minutes of moderate intensity exercise per week. At least half of that exercise should be resistance exercise.

3) Aim for an adequate vitamin D status (>50 nmol/L of serum 25-hydroxy vitamin D). A good place to start is with a multivitamin providing at least 800 IU of vitamin D3.

For more details on my recommendations and a discussion of why studies on vitamin D supplementation are often confusing, read the article above.

These statements have not been evaluated by the Food and Drug Administration. This information is not intended to diagnose, treat, cure or prevent any disease.

 

Health Tips From The Professor