Prenatal Supplements Strike Out Again

Is It Three Strikes And You Are Out?

Author: Dr. Stephen Chaney

Pregnant CoupleIf you are pregnant, you want the best for your unborn baby. Your doctor has recommended a prenatal supplement, but do the prenatal supplements on the market meet your needs? A few months ago, I shared two studies that concluded that most prenatal supplements on the market are woefully inadequate.

In fact, the authors said, “[Our] analysis found that prenatal supplements vary widely in content, often only contain a subset of essential vitamins, and the levels were often below…recommendations.”

In other words, their study found that most prenatal vitamins on the market may not be adequate to support your needs and the needs of your child through pregnancy and breastfeeding.

Now, a third study on the topic has been published (KA Saunders et al, American Journal of Clinical Nutrition, 117: 823-829, 2023. It differs from the previous studies in that:

1) The previous two studies took a comprehensive approach, while this study focused on 6 key nutrients.

  • The previous studies included all nutrients important for a healthy pregnancy including choline, iodine, and vitamin K, which have only recently been shown to be important for a healthy pregnancy.
  • This study focused on 6 nutrients, vitamin A, vitamin D, folic acid, calcium, iron, and omega-3 fatty acids, which have long been recognized as essential for a healthy pregnancy.

2) The previous two studies focused on prenatal supplements, while this study focused on all supplements that might be taken by pregnant women.

3) The previous two studies asked whether supplements provided recommended amounts of all nutrients needed for a healthy pregnancy. This study took a “Goldilocks approach” and asked whether levels of these 6 essential nutrients were appropriate (“just right”). The study:

  • Started by determining the intake of these 6 key nutrients by American women. The authors of the study then added the amount of each nutrient provided by the supplements in their study to the amount of that nutrient in the diet of American women and:
    • Calculated the minimum amount of each nutrient that would be needed to assure that 90% of American women taking a particular supplement would meet the recommended intake for pregnant and lactating women.
    • Calculated the maximum amount of each nutrient provided by supplements in their study to assure that that 90% of American women taking that supplement would not get potentially toxic amounts of that nutrient.
  • In other words, for each of the 6 nutrients they calculated a supplemental dose range that was neither too low nor too high. They called this the “appropriate dose range” for each nutrient. Goldilocks would have called it “just right”.

I’m sure you are anxiously waiting to learn what their study found. But before we go there, I will describe how the study was done.

How Was The Study Done?

clinical studyFor the dietary intake portion of the study, the authors used dietary intake data previously collected from the Environmental Influences on Child Health Outcomes (ECHO) study.

The ECHO study is a consortium of 69 medical centers across multiple states. It is an observational study of mothers and their offspring designed to understand the effects of early life exposures on child health and development.

The current study analyzed dietary intake data for 2450 participants from 6 medical centers across 5 states in the ECHO study. The women in this study were diverse with respect to ethnicity, education, and weight.

All pregnant women in the current study completed at least one 24-hour dietary recall between 6-week gestation until delivery (24% completed one dietary recall. 76% completed two or more dietary recalls). Dietary intake was generally assessed with an expert interviewer and included all foods and beverages consumed in the previous 24 hours.

For the supplement portion of the study, the authors used the NIH Dietary Supplement Label Database because it is the most complete listing of supplements in the US. The authors selected 20,547 supplements that contained at least one of the 6 essential nutrients from this database.

To determine which of the 20,547 supplements contained appropriate levels of the 6 nutrients (vitamin A, vitamin D, folic acid, calcium, iron, and omega-3 fatty acids) selected for this study, the authors used the process described in the introduction above. Briefly:

  • The authors added the amount of each nutrient provided by the supplements in their study to the amount of that nutrient in the diet of American women and:
  • Calculated the minimum amount of each nutrient that would be needed to assure that 90% of American women taking a particular supplement would meet the recommended intake for pregnant and lactating women.
  • Calculated the maximum amount of each nutrient provided by supplements in their study to assure that that 90% of American women taking that supplement would not get potentially toxic amounts of that nutrient.

In other words, for each of the 6 nutrients they calculated a supplemental dose range that was neither too low nor too high. They called this the “appropriate dose range” for each nutrient.

Why Are The 6 Nutrients Included In This Study Important?

Dietary Intake Is Often Inadequate

The diet analysis of pregnant American women in this study found:

  • 42% were at risk of inadequate vitamin A intake.
  • 96% were at risk of inadequate vitamin D intake.
  • 45% were at risk of inadequate folic acid intake.
  • 55% were at risk of inadequate calcium intake.
  • 93% were at risk of inadequate iron intake.
  • 67% were at risk of inadequate omega-3 intake.

The percentage of women at risk for inadequate intake of these nutrients varied with age, ethnicity, and income levels. But the overall message is clear. Most American women are not getting enough of these essential nutrients from their diet alone.

The Risk of Inadequate and Excessive Intake Of These Nutrients

These 6 nutrients were chosen in part because reviews by the Cochrane Collaboration have concluded that inadequate intake of these nutrients are associated with complications during pregnancy and delivery. They can also adversely affect the health and normal development of the baby.

This is important because the Cochrane Collaboration is considered the Gold Standard of clinical studies. You can find a more detailed description of Cochrane Collaboration studies and why they are the Gold standard here.

[Note: The Cochrane Collaboration has not yet evaluated choline, iodine, and vitamin K for pregnant women, but their inclusion in prenatal supplements is supported by multiple clinical studies.]

In addition, excess intake of all these nutrients except omega-3s can harm both the fetus and the mother. The is why the Food and Nutrition Board has set ULs (Upper Limits – the level above which toxicity can occur) for 5 of the 6 nutrients. This is important because previous studies have suggested that up to 25% of women may be getting toxic levels of one or more of these nutrients when you consider both their dietary intake and their prenatal supplement.

Summary

In other words, both too little and too much of these nutrients can harm the mom and her baby. It is critical that prenatal supplements get the dosing right.

It is for that reason that the authors of this study have set an “appropriate dose range” (high enough that 90% of women have enough of each nutrient to prevent deficiency and low enough that 90% of women do not exceed the UL for each nutrient) as the standard for evaluating the adequacy and safety of supplements for pregnant women.

Prenatal Supplements Strike Out Again

Of the 20,547 supplements (421 labeled as prenatal supplements) available on the US market as of December 31, 2022, the investigators reported that:

  • Only 69 (0.3%) supplements contained all 6 nutrients considered essential for a healthy pregnancy.
  • Only 1 supplement contained all 6 nutrients at the appropriate doses, and it wasn’t even labeled as a prenatal supplement.

In addition:

  • One supplement containing all 6 nutrients put 100% of the women in their study at risk for excessive intake of folic acid.
  • Another supplement containing all 6 nutrients put 46% of the women in their study at risk of inadequate calcium intake.

The authors concluded, “Almost no US dietary supplements provide key nutrients in the doses needed for pregnant women. Affordable and convenient products that fill the gap between food-based intake and estimated requirements of pregnancy without inducing excess intake are needed to support pregnant women and their offspring.”

In short, the conclusion of this study can be summed up as, “Prenatal Supplements Strike Out Again”.

[Note: It sometime takes a while for supplement labels to be posted in the NIH Dietary Supplement Label Database. The authors acknowledged that this study may not include supplements introduced or reformulated in the last quarter of 2022.]

Is It Three Strikes And You Are Out? 

pregnant women taking vitaminsIf you are pregnant or thinking of becoming pregnant, this should be a wake-up call.

70% of pregnant women in this country take prenatal supplements, usually based on recommendations by their health care provider. They assume the prenatal supplements meet their needs and the needs of their unborn baby.

Yet three studies evaluating the adequacy of prenatal supplements have been published in the past few months. They took very different approaches in evaluating the supplements. But all three studies concluded that the vast majority of prenatal supplements on the market are woefully inadequate.

You may be wondering, “Is it three strikes, and you are out?” Are there no decent prenatal supplements on the market?  The answer to those questions is, “No. There are good prenatal supplements on the market.”

You may be wondering how I can say that in the face of such overwhelming negative data. That’s because while all 3 studies were very good studies, they each had “blind spots”:

1) Each of the studies used very stringent criteria for identifying adequate prenatal supplements. In some cases, their criteria were stricter than the RDA recommendations and the recommendations of the American College of Obstetrics and Gynecology for pregnant and lactating women. It could be argued that their criteria were too stringent.

2) In the case of the current study, it could also be argued that evaluating only 6 nutrients is not a good criterion for evaluating the adequacy of prenatal supplements. For example, I looked up the one supplement rated as adequate in this study. It does provide appropriate doses of the 6 nutrients this study focused on. It also provides appropriate doses of vitamin K and iodine. But it does not provide choline. It is a very good supplement for women, but it is not the perfect prenatal supplement.

So, what can you do? How can you find the best prenatal supplement for you? Unfortunately, you cannot rely on advice from your friends or your health professional. You cannot rely on advertisements. That is a good place to start, but you have to do your own sleuthing.

With that in mind, I have listed 7 simple rules for selecting the best possible prenatal supplement in  my article about the first two studies. Use these rules for evaluating every prenatal supplement you come across. Happy sleuthing.

The Bottom Line 

A recent study evaluated all 20,547 supplements on the US market to see if they met the needs of pregnant women in this country.

  • They focused on 6 nutrients (vitamin A, vitamin D, folic acid, calcium, iron, and omega-3s) known to be essential for a healthy pregnancy.
  • They determined the dietary intake for all 6 nutrients in a cross section of pregnant women in the US.
  • They added the amount of the 6 nutrients in each of the 20,547 supplements to the dietary intake of those nutrients by pregnant women.
  • They then asked which supplements provided the “appropriate dose” of all 6 nutrients. They defined “appropriate dose” as the dose range that was.
    • High enough to prevent deficiency of that nutrient in 90% of pregnant women taking the supplement…and…
    • Low enough to prevent toxicity from that nutrient in 90% of pregnant women taking the supplement.
  • In other words, for each of the 6 nutrients they calculated a supplemental dose range that was neither too low nor too high.

Of the 20,547 supplements (421 labeled as prenatal supplements) available on the US market:

  • Only 69 (0.3%) supplements contained all 6 nutrients they considered essential for a healthy pregnancy.
  • Only 1 supplement contained all 6 nutrients at the appropriate doses, and it wasn’t even labeled as a prenatal supplement.

The authors concluded, “Almost no US dietary supplements provide key nutrients in the doses needed for pregnant women. Affordable and convenient products that fill the gap between food-based intake and estimated requirements of pregnancy without inducing excess intake are needed to support pregnant women and their offspring.”

[Note: It sometime takes a while for supplement labels to be posted in the NIH Dietary Supplement Label Database. The authors acknowledged that this study may not include supplements introduced or reformulated in the last quarter of 2022 or early 2023.]

If you are pregnant or thinking of becoming pregnant, this should be a wake-up call.

70% of pregnant women in this country take prenatal supplements, usually based on recommendations by their health care provider. They assume the prenatal supplements meet their needs and the needs of their unborn baby.

Yet three studies evaluating the adequacy of prenatal supplements have been published in the past few months. And all three studies concluded that the vast majority of prenatal supplements on the market are woefully inadequate.

You may be wondering, “Is it three strikes, and you are out?” Are there no decent prenatal supplements on the market?  The answer to those questions is, “No. There are good prenatal supplements on the market.”

You may be wondering how I can say that in the face of such overwhelming negative data. That’s because while all 3 studies were very good studies, they each had “blind spots”:

For more details on this study and 7 tips on finding the best prenatal supplement for you, read the article above.

These statements have not been evaluated by the Food and Drug Administration. This information is not intended to diagnose, treat, cure, or prevent any disease. 

____________________________________________________________________________

My posts and “Health Tips From the Professor” articles carefully avoid claims about any brand of supplement or manufacturer of supplements. However, I am often asked by representatives of supplement companies if they can share them with their customers.

My answer is, “Yes, as long as you share only the article without any additions or alterations. In particular, you should avoid adding any mention of your company or your company’s products. If you were to do that, you could be making what the FTC and FDA consider a “misleading health claim” that could result in legal action against you and the company you represent.

For more detail about FTC regulations for health claims, see this link.

https://www.ftc.gov/business-guidance/resources/health-products-compliance-guidance

 

 

What Role Should DNA Testing Play In Nutritional Recommendations?

The Promise And Problems Of Nutrigenomics

Author: Dr. Stephen Chaney 

nutrigenomicsWhen the human genome was sequenced in 2003, many of us in the scientific community thought we were on the verge of a revolution in human health and longevity. We would soon be able to tell individuals their risk of developing various diseases.

Even better, we would be able to tell them the kind of diet and supplementation they needed to avoid those diseases. We would be able to personalize our nutritional recommendation for every individual based on their genome – something called nutrigenomics.

How naive we were! It has turned out to be much more complicated to design personalized nutrition recommendations based on someone’s genome than we ever imagined.

What Is Nutrigenomics?

professor owlAs a Professor at the University of North Carolina I specialized in cancer drug development for over 30 years. Over the last decade of my career a field called pharmacogenomics became widely accepted in the field of cancer drug development. In simple terms, pharmacogenomics looks at how an individual’s genes influence the effectiveness and side effects of drugs.

Because of pharmacogenomics, drugs today are being approved to target cancers for people whose cancer cells have a particular genetic makeup. These drugs would not have been approved a decades ago because if you test them on cancer in the general population, they have little or no effectiveness. They only work on a subset of people who have a form of cancer with a specific genetic makeup.

In principle, nutrigenomics is the same principle. You’ve heard for years that we all have unique nutritional needs. Now we are starting to learn why. It’s because we all have unique variations in our genetic makeup. These genetic mutations increase our risk of certain diseases, and they increase our needs for certain nutrients.

For example, mutations in the MTHFR gene increase the risk of certain birth defects, and supplementation with folic acid is particularly important for reducing birth defects in that population group.

Similarly, mutations in the vitamin D receptor, the VDR gene, interfere with vitamin D absorption from foods and are associated with a condition known as “vitamin D-resistant rickets”. Babies born with this genetic defect require mega doses of vitamin D for normal bone formation.

These are the best-established examples of gene mutations that affect nutritional needs. Many more gene-nutrient interactions have been proposed, but they have not been validated by follow-up experiments.

The situation is similar when we look at gene mutations associated with metabolic responses such as fat and carbohydrate metabolism, obesity, insulin resistance and type 2 diabetes. There are a few gene mutations that have strong associations with obesity and diabetes. Many more gene-metabolism interactions have been proposed, but the data are weak and inconsistent.

The Promise And Problems Of Nutrigenomics

The Promise Of Nutrigenomics.

thumbs upNow that you understand what nutrigenomics is and have some background information about it, let’s look at the promise of nutrigenomics. One promise of nutrigenomics is personalized supplement programs.

We all have different nutritional needs. Wouldn’t it be wonderful if someone could analyze your genome and provide you with a personalized supplement program that precisely fits your genetically determined nutritional requirements?

There are companies that offer such personalized supplement programs. Are they providing you with something of value or is their testing bogus? Are their supplements worthless?

Another promise of nutrigenomics is personalized diet advice. Some people seem to do better on low-fat diets. Other people do better on low-carb diets. Saturated fats and red meats may be more problematic for some individuals than for others. Wouldn’t it be wonderful if someone could analyze your genome and provide you with a personalized diet program – one that allows you to lose weight easily and gain vibrant health.

There are companies that will analyze your genome and tell you whether you are more likely to lose weight and be healthier on a low-fat or low-carbohydrate diet. Is their testing accurate or is it bogus? Are they providing you with useful information, or is their diet advice worthless?

The Problem With Nutrigenomics

thumbs down symbolThe short answer to the questions I posed in the previous section is that personalized supplement and diet programs are on the horizon, but we are not there yet. Companies promising you personalized nutrition programs based only on DNA tests are misleading you. They quote a few studies supporting the tests they run and ignore the many studies showing their tests are worthless.

In case you think that is just my opinion, let me quote from some recent reviews on the current status of nutrigenomics.

For example, a review (C Murgia and MM Adamski, Nutrients, 366, 2017) published in 2017 concluded: “The potential applications to nutrition of this invaluable tool were apparent since the genome was mapped. The first articles discussing nutrigenomics and nutrigenetics were published less than a year after the first draft of the human DNA sequence was made available…However, fifteen years and hundreds of publications later, the gap between the experimental and epidemiologic evidence and health practice is not yet closed.”

“The [complexity] of the genotype information is not the only factor that complicates this translation into practice. The discovery of other levels of control, including epigenetics [modifications of DNA that affect gene expression] and the intestinal microbiome, are other complicating factors. While the science of nutritional genomics continues to demonstrate potential individual responses to nutrition, the complex nature of gene, nutrition and health interactions continues to provide a challenge for healthcare professionals to analyze, interpret and apply to patient recommendations.”

Another review (M Gaussch-Ferre et al, Advances in Nutrition, 9: 128-135, 2018) published in 2018 concluded: “Overall, the scientific evidence supporting the dissemination of genomic information for nutrigenomic purposes remains sparse. Therefore, additional knowledge needs to be generated…”

In short, the experts are saying we still don’t know enough to predict the best diets, or the best supplements based on genetic information alone. Why is that? Why is it so complicated? In part, it can be explained by a term called penetrance. Penetrance simply means that the same gene mutation can have different effects in different people. In some people, its effects may be barely noticeable. In other people its effects may be debilitating.

The Truth About DNA Testing And Personalized Nutrition

The TruthPenetrance is just a word. It’s a concept. The important question is, “What causes differences in genetic penetrance?” Here are the most likely explanations.

1) Human genetics is very complex. There are some gene mutations, such as those causing cystic fibrosis and sickle cell anemia, that can cause a disease by themselves. Most gene mutations, however, simply predispose to a disease or metabolic disturbance and are highly influenced by the activity of other genes. That’s because the products of gene expression form intricate regulatory and metabolic networks. When a single gene is mutated, it interacts with many other genes in the network. And, that network is different for each of us.

2) Many common diseases are polygenic. That includes diseases like heart disease, diabetes, and most cancers. Simply put, that means that they are not caused by a single gene mutation. They are caused by the cumulative effect of many mutations, each of which has a small effect on disease risk. The same appears to be true for mutations that influence carbohydrate and fat metabolism and affect nutrient requirements.

3) The outcome of gene mutations is strongly influenced by our diet, lifestyle, and environment. For example, a common mutation in a gene called FTO predisposes to obesity. However, the effect of this mutation on obesity is strongest when it is coupled with inactivity and foods of high caloric density (translation: junk foods and fast foods instead of fresh fruits and vegetables). Simply put, that means most of us are genetically predisposed to obesity if we follow the American lifestyle, but obesity is not inevitable.

4) Epigenetics has an important influence on gene expression. When I was a graduate student, we believed our genetic destiny was solely determined by our DNA sequence. That was still the prevailing viewpoint when the human genome project was initiated. We thought that once we had our complete DNA sequence, we would know everything we needed to know about our genetic destiny.

How short sighted we were! It turns out that our DNA can be modified in multiple ways. These modifications do not change the DNA sequence, but they can have major effects on gene expression. They can turn genes on or turn them off. More importantly, we have come to learn that these DNA modifications can be influenced by our diet, lifestyle, and exposure to environmental pollutants.

This is the science we call epigenetics. We have gone from believing we have a genome (DNA sequence) that is invariant and controls our genetic destiny to understanding that we also have an “epigenome” (modifications to our DNA) that is strongly influenced by our diet, lifestyle, and environment and can change day-to-day.

microbiome5) Our microbiome has an important influence on our health and nutritional status. Simply put, the term microbiome refers to our intestinal microbes. Our intestinal bacteria are incredibly diverse. Each of us has about 1,000 distinct species of bacteria in our intestines. 

Current evidence suggests these intestinal bacteria influence our immune system, inflammation and auto-immune diseases, brain function and mood, and our predisposition to weight gain – and this may just be the tip of the iceberg.

More importantly, our microbiome is influenced by our diet. For example, vegetarians and meat eaters have entirely different microbiomes. Furthermore, the effect of diet on our microbiome is transitory. If you change your diet, the species of bacteria in your microbiome will completely change in a few weeks.

Finally, our microbiome also influences our nutritional requirements. For example, some species of intestinal bacteria are the major source of biotin and vitamin K2 for all of us and the major source of vitamin B12 for vegans. Intestinal bacteria may also contribute to our supply of folic acid and thiamine. Other intestinal bacteria inactivate and/or remove some vitamins from the intestine for their own use. Thus, the species of bacteria that populate our intestines can influence our nutritional requirements.

Now that you know the complexity of gene interactions you understand why we are not ready to rely on DNA tests yet. We don’t yet know enough to design a simple DNA test to predict our unique nutritional needs. That science is at least 10-20 years in the future. Companies that tell you otherwise are lying to you.

What Role Should DNA Testing Play In Nutritional Recommendations? 

Questioning WomanThe algorithms that are most successful in creating personalized diet and/or supplement recommendations:

1) Start with an analysis of your diet and lifestyle. They powerfully affect both gene expression and your microbiome.

2) Add in health parameters such as blood pressure, LDL cholesterol, HDL cholesterol, triglycerides, and hemoglobin A1c (a measure of blood sugar control). For example, a DNA analysis may suggest you are at risk for having elevated cholesterol, but whether you do or not is influenced by many other factors. A simple blood test indicates whether that risk is real for you.

3) Consider your personal health goals. If nutritional recommendations are to be personalized to you, they should emphasize the health goals you value most.

4) Include any diseases you have and recommendations of your doctor. If your doctor has recommended you lower your blood pressure, your cholesterol, or blood sugar levels, that is valuable information to include in the mix.

5) Now you are ready to include DNA testing in the mix. It can provide some valuable insights, but those insights need to be filtered through the lens of all the critical information collected in the first four steps. Genetics gives you possibilities. The information collected in the first four steps represents your realities.

The Bottom Line 

Nutrigenomics is defined as the interaction between our genetic makeup and our diet. How far have we advanced in the science of nutrigenomics? Can a simple DNA test provide us with useful information?

For example, we all have different nutritional needs. Wouldn’t it be wonderful if someone could analyze your genome and provide you with a personalized supplement program that precisely fits your genetically determined nutritional requirements?

There are companies that will analyze your genome and offer personalized supplement programs. Are they providing you with something of value or is their testing bogus? Are their supplements worthless?

There are companies that will analyze your genome and tell you whether you are more likely to lose weight and be healthier on a low-fat or low-carbohydrate diet. Is their testing accurate or is it bogus? Are they providing you with useful information, or is their diet advice worthless?

Two recent reviews have surveyed the nutrigenomic literature (all published clinical studies) and have concluded that we still don’t know enough to predict the best diets, or the best supplements based on genetic information alone. Why is that? It is because:

1) Human genetics is very complex.

2) Many common diseases are polygenic (caused by the cumulative effect of many mutations).

3) The effect of gene mutations on our health and wellbeing is strongly influenced by our diet, lifestyle, and environment.

4) Epigenetics has an important influence on gene expression.

5) Our microbiome has an important influence on our health and nutritional status.

For more details on these studies and the kind of testing that best determines the right diet and/or supplement program for you, read the article above.

These statements have not been evaluated by the Food and Drug Administration. This information is not intended to diagnose, treat, cure or prevent any disease.

Are Low Carb Diets Healthier?

The “Goldilocks Effect”

Author: Dr. Stephen Chaney

Goldilocks EffectThe low-carb wars rage on. Low-carb enthusiasts claim that low-carb diets are healthy. Many health experts warn about the dangers of low-carb diets. Several studies have reported that low-carb diets increase risk of mortality (shorten lifespan).

However, two recent studies have come to the opposite conclusion. Those studies reported that high carbohydrate intake increased mortality, and low carbohydrate intake was associated with the lowest mortality.

One of those studies, called the Prospective Urban Rural Epidemiology (PURE) study was published a few years ago. It included data from 135,335 participants from 18 countries across 5 continents. That’s a very large study, and normally we expect very large studies to be accurate. The results from the PURE study had low-carb enthusiasts doing a victory lap and claiming it was time to rewrite nutritional guidelines to favor low-carb diets.

Whenever controversies like this arise, reputable scientists are motivated to take another look at the question. They understand that all studies have their weaknesses and biases. So, they look at previous studies very carefully and try to design a study that eliminates the weaknesses and biases of those studies. Their goal is to design a stronger study that reconciles the differences between the previous studies.

A third study published a year later (SB Seidelmann et al, The Lancet, doi.org/10.1016/S2468-2667(18)30135-X was such a study. This study resolved the conflicting data and finally answered the question: “How much carbohydrate should we be eating if we desire a long and healthy life?” The answer is “Enough”.

I call this “The Goldilocks Effect”. You may remember “Goldilocks And The Three Bears”. One bed was too hard. One bed was too soft. But one bed was “just right”. One bowl of porridge was too hot. One was two cold. But one was “just right”. According to this study, the same is true for carbohydrate intake. High carbohydrate intake is unhealthy. Low carbohydrate intake is unhealthy. But moderate carbohydrate intake is “just right”.

How Was The Study Done?

clinical studyThis study was performed in two parts. This first part drew on data from the Atherosclerosis Risk in Communities (ARIC) study. That study enrolled 15,428 men and women, aged 45-64, from four US communities between 1987 and 1989. This group was followed for an average of 25 years, during which time 6283 people died. Carbohydrate intake was calculated based on food frequency questionnaires administered when participants enrolled in the study and again 6 years later. The study evaluated the association between carbohydrate intake and mortality.

The second part was a meta-analysis that combined the data from the ARIC study with all major clinical studies since 2007 that measured carbohydrate intake and mortality and lasted 5 years or more. The total number of participants included in this meta-analysis was 432,179, and it included data from previous studies that claimed low-carbohydrate intake was associated with decreased mortality.

Are Low Carb Diets Healthier?

GravestoneThe results from the ARIC study were:

  • The relationship between mortality and carbohydrate intake was a U-shaped curve.
    • The lowest risk of death was observed with a moderate carbohydrate intake (50-55%). This is the intake recommended by current nutrition guidelines.
    • The highest risk of death was observed with a low carbohydrate intake (<40%).
    • The risk of death also increased with very high carbohydrate intake (>70%).
  • When the investigators used the mortality data to estimate life expectancy, they predicted a 50-year old participant would have a projected life expectancy of:
    • 33.1 years if they had a moderate intake of carbohydrates.
    • 4 years less if they had a low carbohydrate intake.
    • 1.1 year less if they had a very high carbohydrate intake.
  • The risk associated with low carbohydrate intake was affected by what the carbohydrate was replaced with.
    • When carbohydrates were replaced with animal protein and animal fat there was an increased risk of mortality on a low-carb diet. The animal-based low-carb diet contained more beef, pork, lamb, chicken, and fish. It was also higher in saturated fat.Beans and Nuts
    • When carbohydrates were replaced with plant protein and plant fats, there was a decreased risk of mortality on a low-carb diet. The plant-based low-carb diet contained more nuts, peanut butter, dark or whole grain breads, chocolate, and white bread. It was also higher in polyunsaturated fats.
  • The effect of carbohydrate intake on mortality was virtually the same for all-cause mortality, cardiovascular mortality, and non-cardiovascular mortality.
  • There was no significant effect of carbohydrate intake on long-term weight gain (another myth busted).

The results from the dueling meta-analyses were actually very similar. When the data from all studies were combined:

  • Both very low carbohydrate diets and very high carbohydrate diets were associated with increased mortality.
  • Meat-based low-carb diets increased mortality, and plant-based low-carb diets decreased mortality.
  • Once again, the results were the same for total mortality, cardiovascular mortality, and non-cardiovascular mortality.

The authors concluded: “Our findings suggest a negative long-term association between life-expectancy and both low carbohydrate and high carbohydrate diets…These data also provide further evidence that animal-based low carbohydrate diets should be discouraged. Alternatively, when restricting carbohydrate intake, replacement of carbohydrates with predominantly plant-based fats and proteins could be considered as a long-term approach to healthy aging.”

Simply put, that means if a low carb diet works best for you, it is healthier to replace the carbs with plant-based fats and protein rather than animal-based fats and protein.

The “Goldilocks Effect”

low carb dietThis study also resolved the discrepancies between previous studies. The authors pointed out that the average carbohydrate intake is very different in Europe and the US than in Asian countries and low-income countries.

In the US and Europe mean carbohydrate intake is about 50% of calories and it ranges from 25% to 70% of calories. With that range of carbohydrate intake, it is possible to observe the increase in mortality associated with both very low and very high carbohydrate intakes.

The US and European countries are affluent, which means that low-carb enthusiasts can afford diets high in animal protein.

White rice is a staple in Asian countries, and protein is a garnish rather than a main course. Consequently, overall carbohydrate intake is greater in Asian countries and very few Asians eat a truly low carbohydrate diet. High protein foods tend to be more expensive than high carbohydrate foods. Thus, very few people in developing countries can afford to follow a very low carbohydrate diet, and overall carbohydrate intake also tends to be higher.

Therefore, in Asian and developing countries the average carbohydrate intake is greater (~61%) than in the US and Europe, and the range of carbohydrate intake is from 45% to 80% of calories. With that range of intake, it is only possible to see the increase in mortality associated with very high carbohydrate intake.

Both the studies that low-carb enthusiasts quote to support their claim that low-carb diets are healthy relied heavily on data from Asian and developing countries.ARIC Study

In fact, when the authors of the current study overlaid the data from the PURE study with their ARIC data, there was an almost perfect fit. The only difference was that their ARIC data covered both low and high carbohydrate intake while the PURE study touted by low-carb enthusiasts only covered moderate to high carbohydrate intake.

[I have given you my rendition of the graph on the right. If you would like to see the data yourself, look at the paper.]

Basically, low-carb advocates are telling you that diets with carbohydrate intakes of 30% or less are healthy based on studies that did not include carbohydrate intakes below 40%. That is misleading. The studies they quote are incapable of detecting the risks of low carbohydrate diets.

What Does This Study Mean For You?

QuestionsThere are several important take-home lessons from this study:

  • All major studies agree that very high carbohydrate intake is unhealthy. In part, that reflects the fact that diets with high carbohydrate intake are likely to be high in sodas and sugary junk foods. It may also reflect the fact that diets which are high in carbohydrate are often low in plant protein or healthy fats or both.
  • All studies that cover the full range of carbohydrate intake agree that very low carbohydrate intake is also unhealthy. It shortens the life expectancy of a 50-year-old by about 4 years.
  • The studies quoted by low carb enthusiasts to support their claim that low-carb diets are healthy don’t include carbohydrate intakes below 40%. That means their claims are misleading. The studies they quote are incapable of detecting the risks of low carbohydrate diets.
  • Meat-based low-carb diets decrease life expectancy while plant-based low carb diets increase life expectancy. This is consistent with previous studies. For more details on those studies, see my article, “Are Any Low-Carb Diets Healthy?”, in “Health Tips From The Professor” or my book, “Slaying The Food Myths”.

The health risks of meat-based low-carb diets may be due to the saturated fat content or the heavy reliance on red meat. However, the risks are just as likely to be due to the foods these diets leave out – typically fruits, whole grains, legumes, and some vegetables.

Proponents of low-carb diets assume that you can make up for the missing nutrients by just taking multivitamins. However, each food group also provides a unique combination of phytonutrients and fibers. The fibers, in turn, influence your microbiome. Simply put, whenever you leave out whole food groups, you put your health at risk.

The Bottom Line

The low-carb wars are raging. Several studies have reported that low-carb diets increase risk of mortality (shorten lifespan). However, two studies published a few years ago have come to the opposite conclusion. Those studies have low-carb enthusiasts doing a victory lap and claiming it is time to rewrite nutritional guidelines to favor low-carb diets.

However, a study published a year later resolves the conflicting data and finally answers the question: “How much carbohydrate should we be eating if we desire a long and healthy life?” The answer is “Enough”.

I call this “The Goldilocks Effect”. According to this study, high carbohydrate intake is unhealthy. Low carbohydrate intake is unhealthy. But, moderate carbohydrate intake is “just right”.

Specifically, this study reported:

  1. Moderate carbohydrate intake (50-55%) is healthiest. This is also the carbohydrate intake recommended by current nutritional guidelines.

2) All major studies agree that very high carbohydrate intake (60-70%) is unhealthy. It shortens life expectancy of a 50-year old by about a year.

3) All studies that cover the full range of carbohydrate intake agree that low carbohydrate intake (<40%) is also unhealthy. It shortens life expectancy of a 50-year old by about 4 years.

4) The studies quoted by low carb enthusiasts to support their claim that low-carb diets are healthy don’t include carbohydrate intakes below 40%. That means their claims are misleading. The studies they quote are incapable of detecting the risks of low carbohydrate diets.

5) Meat-based low-carb diets decrease life expectancy while plant-based low carb diets increase life expectancy. This is consistent with the results of previous studies.

The authors concluded: “Our findings suggest a negative long-term association between life-expectancy and both low carbohydrate and high carbohydrate diets…These data also provide further evidence that animal-based low carbohydrate diets should be discouraged. Alternatively, when restricting carbohydrate intake, replacement of carbohydrates with predominantly plant-based fats and proteins could be considered as a long-term approach to healthy aging.”

Simply put, that means if a low carb diet works best for you, it is healthier to replace the carbs with plant-based fats and protein rather than animal-based fats and protein.

For more details, read the article above.

These statements have not been evaluated by the Food and Drug Administration. This information is not intended to diagnose, treat, cure or prevent any disease.

Hip And Knee Pain Relief

A Common Cause For Pains From Hip To Knee 

Author: Julie Donnelly, LMT –The Pain Relief Expert

Editor: Dr. Steve Chaney 

Spring Is In The Air

Beach At SunsetI remember as a child we sang “Though April showers may come your way…they bring the flowers that bloom in May…”

Of course, here in Florida we are blessed with flowers all year, but there is still a lovely feeling that happens in Spring.  It’s still cool enough most days to go out running, and the humidity is still low.

Traffic will soon be easing up as our friends from the north start their trek back home, and daylight savings time is giving us more time to get to the beach for sunset.  Lovely!

Fun Facts About Spring…. 

  • The earliest known use of the term “spring cleaning” was in 1857
  • The word “spring” has been used for the season since the 16th century
  • The first day of spring is called the vernal equinox
  • On the first day of spring, the sunrise and sunset are about 12 hours apart everywhere on earth
  • Spring fever isn’t just a saying. Experts say the body changes due to the temperature and can cause an upset in your health.
  • The actual start of spring varies from March 19th to the 21st, but it is commonly celebrated on the 21st.

Do you like to garden?  Now is the perfect time to get your gardens planted so you’ll have home grown veggies for the entire summer.  For me, it’s also a great time to do some spring cleaning and get the house in order before the summer closes all the windows and the air conditioning becomes our indoor relief.

But these activities can also cause a strain on muscles, so don’t forget to take care of yourself.

A Common Cause For Pains From Hip To Knee

hip painThere are times when I am led to sharing a treatment because I had a run of clients all suffering from the same source muscle.  That is what happened for this newsletter.  In March I had at least six clients come to my office, all having different symptoms, but all stemming from the same source.

My clients complained of hip pain, thigh pain, knee pain, and pain down the outside of the lower leg.

In this case it was the Tensor Fascia Lata and two of the three Gluteal muscles: Medius, Minimus. The Gluteus Medius is directly over the Gluteus Minimus, so treating one will actually treat both.  And the Tensor Fascia Lata is right next to both these muscles.

All these muscles insert into the same area of the hip, and for different reasons, they all cause hip pain.  Also, each muscle refers pain to a different location, so you think you have a problem in these referred pain locations, but they are all coming from your hip.

This is one of the many times when working on one area will solve many different problems.

Take a look at these Trigger Point charts:

To read the charts, look at the shaded area (which shows where pain is felt) and look for the muscle name in the same color.  Then follow the arrow to the same-colored round circles with “x”. This is the trigger point (spasm) that is the source of that pain pattern.

You’ll notice that the spasm (trigger point) for the purple pain pattern is in the Gluteus Minimus at the outside of the hip, but the pain pattern goes to the outside of the thigh, the knee, and all the way down to the ankle.

The spasms for the Tensor Fascia Lata is in the same place on the hip, but the pain pattern is the hip, the thigh, and the outside of the knee.

In each of these cases the pain is being felt along the insertion points for the muscles.

Hip And Knee Pain Relief

To relieve the muscle spasms that are causing the problem, use my “Perfect Ball” (You can use a baseball or tennis ball, but my Perfect Ball is just the right size and hardness for the job). Then, either lie on the floor or stand up and lean into a wall as shown in the two photos below.  Lean into the ball, easing your pressure onto the ball gradually.  As the muscle releases it will hurt less and less.            

Then you can rotate your body, so the ball is pressing into the front of your hip or rotating so the ball is rolling toward the back of your body.  You will likely find multiple painful tender spots.  Each spot is a spasm that is putting pressure on your bones or is pulling on the tendon (called the IlioTibial Band – ITB) that is putting pressure onto your lateral knee joint. 

You can also treat these muscles by using a length of 1” PVC pipe as shown in the picture on the left.

This picture was shared with me by an athlete. An avid runner, she couldn’t get down on the ground, nor was there a wall that she could press into, but using the pipe and a street sign pole, she was still able to release the tight muscles that were preventing her from running.

This may not be perfect for you, but if you are an athlete, it could be just what you need when you’re unable to treat yourself as shown above.

You REALLY CAN Treat Yourself 

Since 1989 I have been working with people who are experiencing severe &/or chronic pain.  During those years I’ve managed to figure out why they are in pain, and how they can stop the pain by treating themselves.

It is wonderful when someone can come into my office and I can work directly with them, but I’ve found that the key is the self-treatments I teach them to do at home.  With the self-treatments you can release the tension multiple times every day, retraining your muscles to stay relaxed.

Thousands of people have been able to stop pain fast because they have followed the simple techniques I teach.

You can stop pain fast too!  Even chronic pain releases when you treat the source and not just the symptom! 

To enable you to know where to treat, and how to treat the muscles that cause pain, I’ve produced several “How To” books and DVD programs.

Visit my shopping cart  to see the full line of pain-relief products that will help you overcome:

  • Shoulder pain
  • Neck pain
  • Carpal tunnel symptoms
  • Trigger finger
  • Low back pain
  • Hip pain
  • Sciatica
  • Knee Pain
  • Plantar Fasciitis

In fact, you can get relief for pains from your head to your feet!

Next Month’s Topic 

In May I’ll be sharing about the muscles that cause the #1 repetitive strain injury in the entire world!

If you have, or know someone who has, low back pain, you won’t want to miss next month’s article.

Wishing you well,

Julie Donnelly 

These statements have not been evaluated by the Food and Drug Administration. This information is not intended to diagnose, treat, cure or prevent any disease.

 

 

Could Toxic Chemicals Lower Our Child’s IQ?

Is The Science Solid? 

Author: Dr. Stephen Chaney 

Toxic-BarrelsAs Earth Day approaches, our thoughts turn to our environment. Most of the concern is with global warming, and rightly so. But should we be concerned about the effects of toxic chemicals in our environment on our health – or, more importantly the health of our children?

The short answer is, “Maybe.” But let’s delve a little deeper.

In a past issue of “Health Tips From the Professor” I examined the evidence suggesting that toxic chemicals in the home could cause childhood asthma. That is alarming because asthma can predispose individuals to other diseases and affects quality of life.

But what if that were only the tip of the iceberg? For example, a recent headline stated: “More Toxic Chemicals [In Our Environment] Are Damaging Children’s Brains”. If that headline is true, it’s downright scary.

The authors of this study suggested that toxic chemicals which are abundant in our environment can cause decreases in IQ and aggressive or hyperactive behavior in children – and that those changes may be permanent.

The Study Behind The Headlines

clinical studyThe paper that generated the headlines (Grandjean & Landrigan, The Lancet Neurology, 13: 330-338, 2014) was a review of the literature, not an actual clinical study.

Based on published clinical studies, the authors identified 11 chemicals commonly found in the environment as developmental neurotoxins (toxins that interfere with normal brain development) based.

This finding compares with 6 developmental neurotoxins that they were able to identify in a similar study in 2006.

The authors were not claiming that the number or amount of neurotoxic chemicals changed between 2006 and 2014. They were saying that science has advanced to the point where we can classify six more chemicals that have been in our environment for years as developmental neurotoxins.

Even more worrisome, the authors postulate that many more environmental neurotoxins remain undiscovered, and these environmental neurotoxins come from many sources.

  • Some are industrial pollutants.
  • Some are persistent groundwater contaminants.
  • Some are insecticides and herbicides used in agriculture.
  • Some are found in common household products and furnishings.

Could Toxic Chemicals Lower Our Child’s IQ?

Confused ChildTo answer that question, you need to look at some of the studies they cited in their review. For example:

The effects of many of the neurotoxic chemicals they identified on IQ were difficult to quantify. However, the authors estimated that average exposure of US children to just 3 of the best studied chemical neurotoxins (lead, methylmercury, and organophosphate pesticides) was sufficient to lower their average IQ by 1.6 points.

The authors spoke of the environmental neurotoxins they identified as representing a “silent pandemic of a chemical brain drain” that could cost the US economy billions of dollars.

One of the blog posts I read on this topic summarized the consequences in a very graphic manner. It said:

If one child’s IQ is reduced by 5 points, it doesn’t appear to make a big difference.  For example, that child might be:

  • A little slower to learn.
  • A little shorter of attention.
  • A little less successful at tests and at work.

That might result in $90,000 in lost lifetime earnings.

However, if the average IQ of every child in the US were decreased by 5 points, the effect becomes significant:

  • Only half as many members of the next generation would be “intellectually gifted”.
  • Twice as many of the next generation would be “intellectually impaired”.
  • Lost productivity could be in the billions.

Of course, statements like that are a bit over the top. Drs. Grandjean and Landrigan did not claim that the net effect of the chemicals they identified was a 5-point drop in IQ. Nor did they claim that all US children were affected equally.

Still, it’s enough to make you think.

Are Toxic Chemicals Causing Behavior Problems?

adhd symptoms childrenThe authors cited numerous studies linking the chemical neurotoxins they identified to aggression and hyperactivity. But perhaps the most compelling reason to suspect that environmental chemicals may be affecting brain development is the spiraling incidence of developmental disorders such as autism and ADHD. For example:

  • Autism has increased by 78% since 2007 and now affects 1 of 88 eight-year-old children.
  • ADHD has increased by 43% since 2003 and now affects 11% of children aged 4-17.

Some of this increase could be due to better diagnosis of these conditions, but nobody believes that all of it is due to improved diagnosis. The authors claim that much of this increase is likely due to environmental exposure to the kinds of developmental neurotoxins they identified.

Is The Science Solid?

The TruthOf course, you have seen these kinds of warnings before. Is this crazy talk, or is it something you should take seriously? What is the truth? Is the science solid?

The problem is this is a very difficult area of research. You can’t do a gold standard double-blind, placebo-controlled clinical trial. Nobody in their right mind would give one group of children toxic chemicals and the other group a placebo.

The studies cited in this paper were mostly population studies. Basically, this means that they compared children with exposure to certain toxic chemicals to a control group that was as similar as possible to the first group except that their exposure to the toxic chemicals was less.

The limitation of this kind of study is obvious. We are usually comparing children from different locations or of different backgrounds. We almost never know if we have controlled for all possible variables so that the groups are truly identical.

Consequently, it becomes important to ask how many studies come to the same conclusion. For some of the toxic chemicals, such as lead, methylmercury, and organophosphate pesticides, the weight of evidence is very strong. For some of the newer additions to their list of developmental neurotoxins, it is clear that the chemicals have neurotoxic properties, but the significance of those effects on the developing human brain are hard to quantify at this point.

So, rather than ask, “Is this true?”, we should ask, “What if it were true?” The consequences of lowered IQ and developmental behavioral problems are so significant that it may not make sense to wait until we have unassailable scientific evidence before we act.

We don’t need to panic. The science isn’t that strong. But we should take sensible precautions. The developmental neurotoxins identified in this study come from many sources. Here are the sources and sensible precautions we can take.

  • Some are industrial pollutants. For these, we need to lobby for better environmental regulation.
  • Some are persistent groundwater contaminants. For these we need to drink purified water whenever possible.
  • Some are insecticides and herbicides used in agriculture. For these we need to buy organic, locally grown produce whenever possible.
  • Some are found in common household products and furnishings. For these we need to become educated label readers and use non-toxic products in our home whenever possible.

The Bottom Line:

1) A recent review claims that there is a good scientific basis for classifying at least 11 environmental chemicals as developmental neurotoxins that are likely to reduce IQ and contribute to behavioral problems in US children.

2) The science behind the claims in this review is solid, but not iron clad. This is an area of science where it is virtually impossible to come up with a definitive conclusion.

3) However, there are times when we need to simply ask ourselves: “What if it were true?” The consequences of lowered IQ and developmental behavioral problems are so significant that it may not make sense to wait until we have unassailable scientific evidence before we act.

4) We all need to be guardians of our personal environment. The article above identifies practical steps each of us can take.

For more details and to learn what practical steps you can take to reduce your family’s exposure to toxic chemicals, read the article above.

These statements have not been evaluated by the Food and Drug Administration. This information is not intended to diagnose, treat, cure or prevent any disease.

Are Easter Eggs Bad For You?

Clearing Up The Eggfusion 

Author: Dr. Stephen Chaney

The Easter Bunny will be here soon bringing beautifully decorated eggs for all the children. But wait. Aren’t eggs bad for us? Should we really be encouraging our kids to eat Easter eggs? Maybe we should encourage them to eat Easter candy instead (just kidding).

What is the truth about eggs on our health? Perhaps it’s time for the professor to clear up the “eggfusion” (That’s short for egg confusion). Let me start with a brief historical summary:

  • First there were the warnings that eggs were bad for your heart because egg yolks contained cholesterol, and cholesterol was to be avoided at all costs.
  • Then experts decided that dietary cholesterol wasn’t all that bad for you. It was saturated fats, obesity, and lack of exercise that raised “bad” (LDL) cholesterol levels in your bloodstream.
  • That was followed by several US studies suggesting that eggs in moderation (one per day) did not affect your risk of heart disease.
  • Then a major study claimed that an egg a day actually lowered your risk of heart disease.

Now, the most recent headlines claim that eggs increase your risk of heart disease, and you should avoid them. No wonder you are experiencing eggfusion. Let me review the latest study and put it into perspective by comparing it to previous studies. Let me clear up the eggfusion.

But let me warn you. This is a bit complex, as the truth often is. When I try to explain the contradictions between major studies on egg consumption and heart health, I think the best analogy might be the tale of the blind men trying to tell what an elephant was like by touching different parts of the elephant. None of them could provide an accurate description because none of them could see the whole elephant.

We need to look at the “whole elephant” to see what these studies missed.

How Was The Study Done?

Heart Disease StudyThis study (WW Zhong et al, JAMA, 321: djw322, 2017) combined the data from 6 clinical trials in the United States that assessed dietary intake and measured cardiovascular health outcomes. In all, these studies included 29,615 adults who were followed for an average of 17.5 years.

The diet of the participants was assessed upon entry into each of the clinical trials. The primary variables derived from the dietary information were cholesterol and egg consumption. Diet was not assessed at later times in these studies.

The primary outcomes measured were heart disease and all-cause mortality. In this study heart disease was an umbrella term that included fatal and non-fatal heart attacks, stroke, heart failure, and death from other heart-related causes.

Do Eggs Increase Heart Disease Risk?

heart attacksHere are the main findings from this study.

  • Each additional half an egg consumed per day (which is equivalent to 3-4 eggs per week) was associated with a:
    • 6% increased risk of heart disease. While that doesn’t sound like much, the increased risk was over 13% for one egg per day and almost 27% for two eggs per day.
  • The increased heart disease risk associated with one half egg per day was greater for:
    • Women (13% increase) than men (3% increase).
    • People who already had high blood cholesterol (7% increase), not people who already had low cholesterol levels (0% increase). This suggests that the effect of eggs on heart disease risk primarily affects people who are already having trouble controlling their blood cholesterol levels – either due to genetics or due to diet & lifestyle.

Of course, the question is whether it was the eggs that increased the risk of heart disease or was it something else in the diet. This study attempted to answer that question by systematically subtracting out other variables that affect heart disease risk to see whether that correction eliminated the association between egg consumption and heart disease risk. When this was done:

  • The association between egg consumption and heart disease risk disappeared after correcting for dietary cholesterol intake.
  • The association between egg consumption and heart disease risk remained significant after correcting for other components of the diet, such as fats, animal protein, fiber, sodium, or overall “diet quality”. There were 3 main measures of diet quality.
    • The Med diet score measures how closely the diet resembles the Mediterranean diet.
    • The DASH diet score measures how closely the diet resembles the DASH diet.
    • The Healthy Eating Index (HEI) measures how closely the diet aligns with the USDA Dietary Guidelines For Americans. Basically, the HEI recommends a whole food diet containing foods from all 5 food groups with a heavy emphasis on fruits, vegetables, whole grains, and legumes. It also recommends limiting saturated and trans fats, added sugars, and sodium.

In simple terms the authors concluded that the effect of eggs on heart disease risk was primarily due to their cholesterol content and was not influenced by other components of the overall diet. [I will revisit this conclusion latter.]

What Are The Strengths And Weaknesses Of The Study?

SkepticThe strengths are obvious. This was a very large study (29,615 participants) and the people enrolled in the study were followed for a long time (an average of 17.5 years). The primary variables in the study (cholesterol consumption, egg consumption, heart disease, and all-cause mortality) were accurately measured in each of the clinical trials included in the study.

However, there were some significant weaknesses as well:

  • Cholesterol and egg consumption were only measured by a single dietary survey when people entered the study. This study assumes they did not change over the course of the study. That is very unlikely. Both cholesterol intake and egg consumption in the US population have waxed and waned over the years, in part due to variations in dietary guidelines.
  • The measurements of diet quality used were based on US and European food preferences. That is significant because the only studies showing that egg consumption lowers heart disease risk were performed in China and Japan, where the diet is closer to semi-vegetarian than to US or European diets.

Are Easter Eggs Bad For You?

thumbs down symbolThis is very large, well designed study that combines the data from 6 clinical trials spanning the years 1974 to 2013.

The strongest conclusions from the study are:

  • In the context of a Western diet (the US diet) egg consumption slightly increases your risk developing heart disease. The increased risk is ~6% for 3-4 eggs/week, ~13% for 1 egg per day, and ~27% for two eggs per day.
  • The increased risk of heart disease appears to be almost entirely due to the cholesterol content of eggs.

The significance of this study needs to be weighed in the context of:

  • Recent studies in the US and Europe showing eggs do not increase heart disease risk.
  • Studies in China and Japan (where the diets can best be described as semi-vegetarian) showing that eggs decrease heart disease risk.

The significance of this study also needs to be weighed in the context of:

  • Studies showing that obesity, saturated fat, and physical inactivity have bigger effects on serum cholesterol levels and heart disease risk than dietary cholesterol from foods like eggs.

What Did This Study Miss?

EggsIf, as this study suggests, the effect of eggs on heart disease risk is due to their cholesterol content, this study (and most previous studies) missed a very important point. The effect of dietary cholesterol on blood cholesterol levels is not strongly affected by the overall composition of the diet. It is affected by the composition of the diet at the time foods containing dietary cholesterol are eaten.

  • The kind of fiber found in certain fruits, vegetables, whole grains, and legumes bind to dietary cholesterol, preventing it from being absorbed as it passes through the intestine.
  • Certain phytonutrients in plant foods affect how dietary cholesterol is utilized by the body.
  • However, to blunt the effect of dietary cholesterol on blood cholesterol levels the fiber and phytonutrient-containing foods must be consumed at the same meal.

Simply put, if your breakfast consists of eggs, sausage, biscuits, and hash browns, the cholesterol in the eggs will likely increase your blood cholesterol level, which in turn increases your risk of heart disease. This will occur even if you eat lots of fruits, vegetables, whole grains, and legumes with your other meals.

If, on the other hand, your breakfast consists of eggs and fiber-rich plant foods like oatmeal and beans, the cholesterol in the eggs will likely have a much smaller effect on your blood cholesterol levels and your heart disease risk.

The fact that previous studies have not looked at what foods were consumed along with the eggs may explain some of the variation in their conclusions about the effect of egg consumption on heart disease risk.

The Professor’s Story

professor owlLet me share my story with you. About 25 years ago, my doctor told me that my cholesterol levels were getting high and wanted to put me on statins. I didn’t take a stain, and I didn’t stop eating eggs for breakfast. I changed breakfast.

Now I soft boil my eggs or fry them in olive oil. I eat them along with oatmeal, which contains a fiber that binds cholesterol, and walnuts, which contain omega-3s and phytonutrients that lower blood cholesterol. I also include whatever fruit is in season. Finally, I take a supplement providing 2 grams of plant stanols and sterols, which blocks cholesterol absorption from the intestine.

My blood cholesterol levels have been low ever since. I have not had to take statins, and I get to enjoy the taste and health benefits of an egg any time I want to. Of course, what worked for me may not work for you. The effect of dietary cholesterol on blood cholesterol levels is also affected by genetics, weight, and fitness, just to name the top three.

Are Easter Eggs Good For You?

thumbs upOnce you get past the cholesterol problem, eggs are a very healthy food.

  1. Studies have shown that egg protein results in improved blood sugar control, better satiety (feeling of fullness), and reduced subsequent food intake in healthy and overweight individuals. In layman’s terms that means egg protein can help you achieve and maintain a healthy weight.

2) Egg yolks are a good source of lutein and zeaxanthin. We think of lutein and zeaxanthin as good for eye health. They also play an important role in protecting against oxidation, inflammation, and atherosclerosis.

3) Egg yolks also contain choline. We think of choline as good for brain and nerves. But, choline and other phospholipids in the yolk also raise HDL levels and enhance HDL function.

4) Eggs are a good source of vitamin A, vitamin D, vitamin B12, riboflavin, selenium and iron.

5) Eggs contain almost twice as much monounsaturated and polyunsaturated fats as saturated fats.

Clearing Up The “Eggfusion”

egg confusion

  1. The latest study suggests that eggs may increase your risk of heart disease, and this is due to their cholesterol content.

2) This study needs to be considered in the context of recent studies in the US showing that egg consumption did not increase heart disease risk and studies in China and Japan showing that egg consumption lowered heart disease risk.

3) It is also important to consider that egg consumption in China and Japan is in the context of a semi-vegetarian diet. This suggests that diet plays a role in determining the effect of egg consumption on heart disease risk.

4) However, if you take this study at face value, there are two things you can do to reduce your risk of heart disease:

  • Reduce dietary cholesterol by avoiding eggs or using egg whites.
    • Eat eggs in moderation along with fiber- and phytonutrient-rich plant foods that negate the effect of dietary cholesterol on blood cholesterol levels. I recommend oatmeal or beans, nuts or seeds, and fiber rich fruits and vegetables. These should be consumed at the same meal to minimize the effect of the cholesterol in the eggs on blood cholesterol levels. As for Easter eggs, they are a perfect addition to a green salad.
    • Eggs are a very healthy food, so I recommend the second option if possible. Get your blood cholesterol levels measured to determine which approach works best for you.

5) Finally, we need to recognize that egg consumption plays a relatively minor role in determining heart disease risk. Other factors play a much larger role in influencing heart disease risk. For example:

    • Smoking, obesity, inactivity, saturated and trans fats significantly increase your risk of heart disease.
    • Omega-3s, antioxidants, and a primarily plant-based diet like the Mediterranean diet significantly decrease your risk of heart disease.

If we wish to reduce our risk of heart disease, this is where we should focus most of our attention. We can minimize the effect of egg consumption on heart disease risk by changing the foods we eat with the eggs. For more information on how to reduce your risk of heart disease, read my books, “Slaying The Food Myths” and “Slaying The Supplement Myths”.

The Bottom Line

1) The latest study suggests that eggs increase your risk of heart disease because of their cholesterol content.

2) This was a very large study. It combined the data from 6 clinical trials spanning the years 1974 to 2013. It followed 29,615 people for an average of 17.5 years. However, it has two significant weaknesses:

  • It only determined cholesterol intake and egg consumption at the time people entered the clinical trials. Both cholesterol intake and egg consumption have waxed and waned considerably over the years covered by these clinical trials.
  • It did not measure what foods were consumed along with the eggs. Foods consumed along with eggs have a strong influence on how much the cholesterol in the eggs influences blood cholesterol levels, which, in turn, influences the effect eggs have on heart disease risk.

3) This study also needs to be considered in the context of recent studies in the US showing that egg consumption did not increase heart disease risk and studies in China and Japan showing that egg consumption lowered heart disease risk.

4) However, if you take this study at face value, there are two things you can do to reduce your risk of heart disease:

  • Reduce dietary cholesterol by avoiding eggs or using egg whites.
  • Eat eggs in moderation along with fiber- and phytonutrient-rich plant foods that negate the effect of dietary cholesterol on blood cholesterol levels. I recommend oatmeal or beans, nuts or seeds, and fiber rich fruits and vegetables. These should be consumed at the same meal to minimize the effect of the cholesterol in the eggs on blood cholesterol levels. As for Easter eggs, they are a perfect addition to a green salad.
  • Eggs are a very healthy food, so I recommend the second option if possible. Get your blood cholesterol levels measured to determine which approach works best for you.

5) Finally, we need to recognize that egg consumption plays a relatively minor role in determining heart disease risk. Other factors play a much larger role in influencing heart disease risk. For example:

  • Smoking, obesity, inactivity, saturated and trans fats significantly increase your risk of heart disease.
  • Omega-3s, antioxidants, and a primarily plant-based diet like the Mediterranean diet significantly decrease your risk of heart disease.

For more information on how to reduce your risk of heart disease, read my books, “Slaying The Food Myths” and “Slaying The Supplement Myths”.

For more details and to learn what the professor does about egg consumption, read the article above.

These statements have not been evaluated by the Food and Drug Administration. This information is not intended to diagnose, treat, cure or prevent any disease.

 

 

 

Is Erythritol Bad For Your Heart?

Who Should Be Concerned About Erythritol Intake?

Author: Dr. Stephen Chaney 

Everyone is searching for the perfect sweetener. And if you were in the marketing department of Big Food Inc, the perfect sweetener would be defined as:

  • Natural, meaning that it is found in fruits, vegetables, or other plant foods.
  • Low in calories. Of course, a perfect sweetener would have zero calories because it is not metabolized in our bodies.
  • Low glycemic, meaning that it would have a minimal effect on blood sugar levels. Once again, a perfect sweetener would have zero effect on blood sugar levels.
  • Safe, meaning that it has no adverse effects on our health.

Sugar alcohols appear to meet all these criteria, so they have become the sweetener of choice for lots of highly processed foods. This is especially true for the sugar alcohol, erythritol, since it is currently the least expensive of the sugar alcohols.

So, a recent study (M Witowski et al, Nature Medicine, 2023) suggesting that erythritol might increase the risk of heart disease was quite surprising.

This is the first study to suggest a link between erythritol and heart disease, and it was a flawed study (I will discuss the flaws below).

Reputable scientists don’t put much credence in a weak first study like this one. We generally consider the conclusions of a first study like this one to be an unproven hypothesis at this point.

But we are cautious. There will be many follow-up, better designed studies, to test this hypothesis. Once these studies have been published, the scientific community will look at all the evidence and either issue a warning or conclude that there is no reason for concern.

But that doesn’t stop the Dr. Strangeloves of the world from warning you of the “dangers” of erythritol and telling you to avoid it at all costs.

For that reason, I felt it was appropriate to address this issue. I will:

  • Describe the study and its flaws.
  • Put the study into the broader perspective of what we know about sweeteners.
  • Identify the two population groups who should be most concerned about erythritol.

How Was The Study Done And What Did It Show?

This study can be divided into three parts.

heart disease#1: An Association Between Erythritol Blood Levels And Heart Disease.

There were three separate experiments included in this section of the study. In each experiment patients were recruited after visiting cardiac clinics for diagnostic procedures. The average age of these patients was 67 and 45% of them already had experienced a non-fatal heart attack prior to the study. In other words, these were all older patients with pre-existing heart disease who were at high risk of heart attack or stroke in the near future.

The first study was a metabolomic study. In simple terms this means that high-tech equipment and computing were used to measure hundreds of metabolites in the blood of the patients and, in this case, correlate each of them with the occurrence of heart attacks and strokes over the next three years.

  • This study identified 16 sugar alcohols and related metabolites in the blood of these patients that were associated with an increased risk of heart attack and stroke. (I will discuss the significance of this observation in more detail later.)

Because erythritol was among the top 6 compounds in terms of association with increased heart attack and stroke risk, and erythritol is the most commonly used sugar alcohol in processed foods, the next two studies focused on the association between blood levels of erythritol and heart attack/stroke risk. Their results were predictable.

  • High blood levels of erythritol were associated with an increased risk of heart attack and stroke over the next three years.

Flaws In This Portion Of The Study:thumbs down symbol

  • As the authors of the study pointed out, these studies were done with older patients with pre-existing heart disease who were at high risk of heart attack or stroke. They acknowledged that it is not known whether these associations exist with younger, healthier patients.
  • As the authors also pointed out, these are associations. They do not prove cause and effect. In particular, the studies did not measure the diet, exercise habits, and other lifestyle factors of these patients that may have contributed to their increased risk of heart attack and stroke.
  • When you look closely at the data, it is clear that the association is only seen at the highest blood levels of erythritol. Specifically, the blood levels of erythritol in these patients were divided into quartiles. The risk of heart attack and stroke in the first three quartiles (low to moderate blood levels of erythritol) were identical to the control. However, the fourth quartile (highest blood levels of erythritol) was associated with a dramatically increased risk of heart attack and stroke. That raises three important questions:
    • “How much erythritol were patients in the fourth quartile consuming?”
      • The authors did not look at dietary intake of erythritol but did note a previous study estimated that Americans consume up to 30 grams of erythritol a day.
    • 30 grams of erythritol a day is a huge amount of erythritol. Where does that erythritol come from?
      • Much of it comes from erythritol-containing highly processed foods like zero calorie sugar substitutes (either erythritol alone or erythritol mixed with artificial sweeteners to improve the taste); reduced- and low calorie carbonated and non-carbonated beverages; hard candy and cough drops, cookies, cakes, pastries, and bars; puddings and pie fillings; soft candies; syrups and toppings; ready to eat cereals; fruit novelty snacks; and frozen desserts.
      • But it is also found in foods you might not suspect, such as plant-based “milk” substitutes; chocolate and flavored milks; barbecue and tomato sauce, fruit-based smoothies, the syrup used in canned fruits, yoghurt; low calorie salad dressings; and salty snacks.
      • In other words, the only way anyone can consume 30 grams of erythritol in a day is to consume large quantities of erythritol-containing highly processed foods (I will discuss the significance of this observation later).
    • “What else was different about patients in the fourth quartile?”
      • When you look carefully at the data, the patients in the fourth quartile were significantly older, with a higher incidence of diabetes, pre-existing coronary artery disease, previous non-fatal heart attacks, congestive heart failure, and greater triglycerides – all of which significantly increase their risk of heart attack and stroke.

#2: Mechanistic Studies:

Next the authors did in vitro and animal studies looking at the effect of high levels of erythritol on blood clotting.

  • These studies showed that high levels of erythritol promoted blood clotting both in vitro and in mice. The authors concluded that these studies provided a plausible mechanism for a link between high erythritol blood levels and increased risk of heart attack and stroke.

Flaws In This Portion Of The Study:thumbs down symbol

  • Other critics have pointed out that the assays used were not accurate models of blood clotting in humans. This particular critique is beyond my expertise, so I won’t comment further. However:
    • As someone who was involved in cancer drug development for over 30 years, I know that in vitro and animal models are poor indicators of how things work in humans.
    • And as a biochemist, I have two concerns:
      • The authors provided no mechanistic rationale for why erythritol would enhance blood clotting.
      • The authors made no effort to show that the effect of erythritol was unique. Would high levels of other sugar alcohols or other naturally occurring sugars have the same effect on blood clotting in their assays? We don’t know.

#3: Blood Levels Of Erythritol After Oral Intake.

Finally, the authors gave subjects 30 grams of erythritol and measured blood levels over the next several days.

  • This experiment showed that very high blood levels of erythritol were attained and maintained for at least two days before gradually decreasing to baseline. The authors concluded this experiment showed that it was feasible to attain and maintain high blood levels of erythritol for several days following a single ingestion of 30 grams of erythritol.

Flaws In This Portion Of The Study:thumbs down symbol

  • I have already pointed out that 30 grams per day is a huge amount of erythritol. However, erythritol in the diet will come from a variety of foods, some of which will contain components (fiber etc.) that slow the absorption of erythritol.
  • In contrast, the subjects in this experiment were given 300 ml of liquid containing 30 grams of erythritol and told to drink it in two minutes!
  • In other words, these subjects were consuming 30 grams of erythritol in 2 minutes rather than 24 hours, and they were consuming it in the most easily absorbable form. For a study like this, that makes the effective dose orders of magnitude greater than the amount of erythritol that anyone consumes from their diet over a 24-hour period. The study design was completely unrealistic.

Is Erythritol Bad For Your Heart?

Question MarkAs described above, this is the first study to suggest an association between erythritol and heart disease, and it was a highly flawed study.

It is also important to know that erythritol is not an artificial sweetener. It is found naturally in foods like grapes, peaches, pears, watermelons, and mushrooms. It is also found in some fermented foods like cheese, soy sauce, beer, sake, and wine.

It is also a byproduct of normal human metabolism, so we always have some of it circulating in our bloodstream. Our body knows how to handle low to moderate intakes of erythritol.

However, to help you really understand what this study means, I need to put it into the context of other studies. I will do this in story form (You will find more details about these studies in my book “Slaying The Food Myths”).

First, let’s look at highly processed food consumption:

  • Multiple recent studies have shown that high consumption of highly processed food is associated with increased risk of obesity, diabetes, heart disease, and premature death. We don’t know what it is about highly processed food consumption that is responsible for the increased risk, but it is unlikely to be just one thing.
  • As I pointed out above, the only way to achieve the high blood levels of erythritol associated with increased heart disease risk is to consume large quantities of erythritol-containing highly processed foods.

Next, let’s follow the history of sweeteners in highly processed foods.

  • When I was a young man, sucrose (table sugar) was added to most highly processed foods. Sucrose is foundsugar cubes naturally in many fruits and vegetables. Small to moderate intake of sucrose in unprocessed and minimally processed foods posed no problem. However, large intakes of sugar in highly processed foods were found to increase the risk of obesity, diabetes, heart disease, and premature death.
  • At that point, sucrose became a “sugar villain”, and Big Food, Inc substituted fructose and high fructose corn syrup (a mixture of fructose and glucose) for sugar in their highly processed foods. As with sucrose, fructose is found naturally in many foods, and small to moderate intakes of fructose and high fructose corn syrup posed no health risks. However, large intakes of fructose and high fructose corn syrup in highly processed foods were found to increase the risk of obesity, diabetes, heart disease, and premature death.
  • Fructose and high fructose corn syrup then became the sugar villains. And because high fructose corn syrup is chemically and biologically indistinguishable from natural sugars like honey, date sugar, coconut sugar, it is likely that high intakes of these sugars in highly processed foods would cause the same problem.
  • So Big Food, Inc started relying on artificial sweeteners in their highly processed foods. But guess what? Artificial SweetenersRecent studies have suggested that artificial sweeteners in highly processed foods are associated with obesity, diabetes, and heart disease.
  • That has caused Big Food, Inc to rely more on sugar alcohols in their highly processed foods, particularly erythritol because it is the least expensive of the sugar alcohols. Now the current study comes along and suggests that high intake of erythritol in highly processed foods may increase the risk of heart disease.
  • If this hypothesis is confirmed by better designed studies, it is not clear what Big Food, Inc will do next. The metabolomic study described above showed that high blood levels of several other sugar alcohols are associated with an increased risk of heart disease.

Hopefully, you are starting to see a pattern here. It’s time to ask the question, “Is it the sweetener, or is it the food?”

Clearly, it doesn’t matter what sweetener we are talking about. Large intake of any natural sweetener in the context of a diet rich in highly processed foods appears to have an adverse effect on our health. And we don’t know whether these adverse health effects are caused by the sweetener or some other component of the highly processed foods.

If you want to improve your health, the best solution is to decrease your intake of highly processed foods. That will automatically reduce your intake of sweeteners and other unhealthy components of highly processed foods and increase your intake of healthy components from the whole foods you will be eating instead.

Who Should Be Concerned About Erythritol Intake?

The authors of this study identified two groups who should be most concerned about erythritol consumption – diabetics and adherents of the keto diet.

  • Diabetics are at high risk because they are told to consume non-caloric sweeteners instead of sugars, and they are not told to avoid highly processed foods. Consequently, they consume much higher amounts of non-caloric sweeteners than the average American.
  • I must admit that I didn’t foresee keto adherents as a high-risk group. However, it appears that keto enthusiasts love their sweets as much as the rest of us, and the sweetener of choice for keto-friendly sweets is erythritol. The authors said that a single serving of keto ice cream contains 30 grams of erythritol. I can hardly imagine how much erythritol they must be getting in their diet.

And, once again, the best advice for both groups is to simply decrease the amount of highly processed food in their diet.

The Bottom Line 

Erythritol is not an artificial sweetener. It is found naturally in foods like grapes, peaches, pears, watermelons, and mushrooms. It is also found in some fermented foods like cheese, soy sauce, beer, sake, and wine.

It is also a byproduct of normal human metabolism, so we always have some of it circulating in our bloodstream. Our body knows how to handle erythritol.

That is why it was a surprise when a recent study claimed that high intake of erythritol is associated with an increased risk of heart attack and stroke. The Dr. Strangeloves of the world are already starting to tell you that erythritol is deadly and you should avoid it at all costs. But reputable scientists are saying, “Not so fast”.

This is the first study to suggest an association between erythritol and heart disease, and it was a highly flawed study.

In fact, the study showed that low to moderate intakes of erythritol had no effect on heart disease risk. It was only the highest intake of erythritol that was associated with increased risk of heart disease. And given the distribution of erythritol in the American diet, the only way someone could take in that much erythritol is to consume large amounts of erythritol-sweetened highly processed foods.

A brief review of the literature on sweeteners reveals that this is a common pattern for every natural sweetener tested. Low to moderate intake of these sweeteners has no adverse health effects. However, high intake of every sweetener tested in the context of a highly processed food diet is associated with an increased risk of obesity, diabetes, heart disease, and premature death.

That raises the question, “Is it the sweetener, or is it the food?”

Clearly, it doesn’t matter what sweetener we are talking about. Large intake of any natural sweetener in the context of a diet rich in highly processed foods is likely to have an adverse effect on our health. And we don’t know whether these adverse health effects are caused by the sweetener or some other component of a highly processed food diet.

If you want to improve your health, the best solution is to decrease your intake of highly processed foods. That will automatically reduce your intake of sweeteners and other unhealthy components of highly processed foods and increase your intake of healthy components from the whole foods you will be eating instead.

For more details on the study and information about which foods are likely to contain erythritol and the population groups who should be most concerned about erythritol consumption, read the article above.

These statements have not been evaluated by the Food and Drug Administration. This information is not intended to diagnose, treat, cure or prevent any disease

What May Help If You Have A Bone Bruise

What Not To Do If You Have A Bone Bruise 

Author: Julie Donnelly, LMT –The Pain Relief Expert

Editor: Dr. Steve Chaney

Winter WindMarch is said to “come in like a lion and go out like a lamb,” but I’m not sure about that idea.

If you live in the north, it seems like it would be more appropriate to think that of April.

As for Florida, March is a great month, cool at night and warm during the day.  So, here’s to celebrating the month I always equate with St. Patrick’s Day and the color Kelly green!

My Experience With A Bone Bruise On My Heel

This month I will be talking about a problem that isn’t the most common injury, but one that I had several years ago.

My heel hurt after I slammed it hard into the street when I was coming off a curb. It was a year of excruciating pain that NOTHING would help!  I tried ice, heat, all kinds of creams, and of course, massage.

I saw an orthopedic doctor, had x-rays done twice, both times showed that the bone was not cracked. and it didn’t change if I propped it up or stood on it.  Absolutely nothing gave relief!

There are many reasons for heel pain, such as:

  • Achilles tendonitis
  • Bursitis
  • Heel spur
  • Plantar fasciitis
  • And lots more!

Each of these can be caused by tight muscles of the lower leg, and if you have any of them you would be well to look into muscles to eliminate the pain.

But the heel pain that plagued me for a year was literally a bruise to my heel bone. All the muscles were just fine, and nothing showed up on either of the x-rays my doctor performed.

What You Need To Know About Bone Bruises

Julie DonnellyThis month’s newsletter is meant to give you a heads-up on something I hope you’ll never experience.

I want to talk about bone bruises because it could happen to any bone in your body, and the odds are slim that anyone will ever consider it when you are searching for a solution to pain.

The bones most vulnerable to bruising are ones that are not protected by muscles.  This can include your shoulder, elbow, sacrum, knee, and of course, your foot. It’s normally caused by a blunt force injury, such as falling on a hard surface, but with a strong enough impact, other bones can also become bruised.

If you’ve been to my office, and I’ve taught you self-treatments to continue your therapy at home, you’ve received the Perfect Ball that I use for therapy.

I frequently hear people say they have been treating their arch, or other joints, with a lacrosse ball.  That’s a terrible ball because it’s so hard it could easily bruise the bone.  A baseball is another terrible treatment ball, for the same reason.

If you don’t have a Perfect Ball, I suggest you use a tennis ball.  A tennis ball won’t bruise your bone, and while the Perfect Ball is much better, the tennis ball is at least an acceptable alternative if necessary.

What Not To Do If You Have A Bone Bruise

thumbs down symbolTwo years ago, I was having a tug-of-war with a big vine that was growing up the tree in my yard.  It was a really stubborn vine and was very strong.

But I was determined!  I finally won – but at the cost of going flying down onto the cement driveway, landing squarely on my shoulder. Bad move!

The pain was terrible, and I had a problem moving my arm normally.  It wasn’t my smartest move, and since I could move my arm (painfully), I decided the bone wasn’t broken. As a result, I compounded it by not going straight to a doctor. Another “not smart” move.

I used ice, massaged the muscles, and strapped my arm to my body so I wouldn’t use my shoulder.  When it still hurt two weeks later, I finally decided I should have it looked at by a physician.

Fortunately, the bone wasn’t broken. However, it was severely bruised.  Ice helped to block the pain messages to my brain, but the bruise needed to heal on its own. It took almost six months before it was completely gone.

Having lived through it, I strongly suggest you go to your physician ASAP and get an x-ray to make sure nothing is broken. Your doctor may also order an MRI which can show the bone is bruised.  I’ve since learned that the biggest problem a bone bruise causes is preventing blood flow to the area.  This is more serious than it sounds.

What May Help If You Have A Bone Bruise

thumbs upIn both cases, my heel and my shoulder, I was massaging the entire area, and I believe keeping the blood flowing helped the bone heal without the danger of bone tissue dying from lack of blood.

Some websites say to elevate the injured area (tough to do if it’s your sacrum), but I found that they don’t give any other valuable advice.

I did find that it helped to take a hot Epsom Salts bath.  I don’t know whether it was really helping the bone, or just calming down the rest of my body, but when we hurt, we’ll do anything for some relief, even if it’s a placebo.

I hope you never experience a bone bruise, but at least once you have had the x-ray to know nothing is broken, at least you’ll be aware of why you are in pain, and you’ll know that it really will eventually heal.  Small comfort, but not knowing is even worse because we keep searching for a solution.

You Don’t Need To Suffer

I’ve written several books that show you how to self-treat aches and pains from your head to your feet – safely without bruising your bones or overstretching your muscles.

Check out www.FlexibleAthlete.com/shop to find ways you can Stop Pain FAST!

Next Month’s Topic 

In April I’ll be sharing about the muscles that cause the #1 repetitive strain injury in the entire world!

If you have, or know someone who has, low back pain, you won’t want to miss next month’s article.

My Interview With Trish Jenkins 

I had the good fortune to be interviewed by Trish Jenkins, an amazing woman who lives in Australia and interviews people from around the world.  Here’s the link in case you would like to check it out.  I think it turned out pretty good 😊

https://www.youtube.com/watch?v=6FpVEEegcTs

Wishing you well,

Julie Donnelly 

These statements have not been evaluated by the Food and Drug Administration. This information is not intended to diagnose, treat, cure, or prevent any disease.

Are Carnitine Supplements A Boon Or A Bust?

What Is The Truth About Carnitine And Heart Disease?

Author: Dr. Stephen Chaney

BodybuilderIf you are a weightlifter or bodybuilder, chances are you are taking an L-carnitine supplement, or a protein shake fortified with L-carnitine. That is because L-carnitine has been promoted for increasing muscle mass and physical performance for so long that most people have come to believe it must be true. Is it true, or is it just another food myth?

If you visit Dr. Strangelove’s website, you may also be told that carnitine supplementation is beneficial for weight loss, migraines, baldness, ADHD and autism, chronic fatigue syndrome, and/or low energy, muscle loss, and cognitive decline in older adults. Are these claims fact or fiction?

On the flip side, recent studies have suggested that the carnitine in red meat might be bad for your heart. Could the same be true for carnitine supplements? Could they also be bad for your heart?

A recent systematic review (AG Sawicka et al, Journal of the International Society of Sports Nutrition, 17: 49, 2020) of L-carnitine supplementation answers these important questions. The authors called their study “The bright and dark sides of L-carnitine supplementation” because they set out to systematically investigate the benefits and potential risks of L-carnitine supplementation.

But before I share the results of this study, I need to give you a little background on L-carnitine. It is time for another Biochemistry 101 segment.

Biochemistry 101: What You Need To Know About Carnitine

professor owlCarnitine plays an essential role in human metabolism. It is required for transport of fatty acids into our mitochondria so they can be used to generate energy. Without carnitine we would be unable to utilize most of the fats in our diet as an energy source.

As you might expect, carnitine is essential for any tissues that have mitochondria, but it is particularly important for high energy tissues like skeletal and heart muscle.

For most of us, our liver and kidneys make all the carnitine we need. So, we don’t really need carnitine from food or supplements.

However, we do get significant amounts of carnitine from red meat, much smaller amounts of carnitine from other animal foods, and almost no carnitine from plant foods. Adults consuming diets with red meat and other animal foods get about 60-180 mg of carnitine a day from their diet, whereas vegans only get around 10-12 mg/day.

Uptake of carnitine from the blood into muscle tissues requires insulin. Thus, carnitine uptake into muscle is significantly less on a low-carbohydrate or keto diet than it is on a mixed diet containing carbohydrates.

Finally, our kidneys do an excellent job of regulating blood carnitine levels, with excess carnitine being excreted into the urine. Thus, total body carnitine levels are virtually the same with high-carnitine and low-carnitine diets.

Question MarkThis raises the question: Are L-carnitine supplements good for you?

Now, let’s talk about the dark side of carnitine. I have discussed this in a previous issue of “Health Tips From the Professor”. Here is a brief summary:

  • People who eat a lot of red meat harbor a species of bacteria in their intestine that converts carnitine to trimethylamine (TMA). We don’t know whether this species of gut bacteria is favored by the presence of red meat in the diet or the absence of certain fruits, whole grains, and legumes from the diet of meat eaters.
  • The TMA is reabsorbed into the bloodstream, and the liver converts TMA to TMAO (trimethylamine N-oxide).
  • TMAO is associated with an increased risk of heart attack, stroke, and heart failure.

When you think about it, this is a perfect example of double jeopardy. Red meat is high in carnitine, and red meat eaters have gut bacteria that result in carnitine being converted to a compound that may increase the risk of heart disease.

This raises the question: Are L-carnitine supplements bad for you?

Let’s look at these two questions. First, I will discuss the recent review. Then I will put the conclusions of that review into perspective by looking at what other health experts say

Are Carnitine Supplements A Boon Or A Bust?

good news bad newsMost previous studies of carnitine supplementation have lasted only two or three weeks, which may not be long enough to measure an effect of carnitine supplementation on performance. So, the authors of this review paper selected studies that lasted 11 weeks or more for their review.

The review included 11 studies. They lasted either 12 or 24 weeks. Participants received doses ranging from 1 gm to 4.5 gm of L-carnitine per day. Here are the conclusions of the review:

  • Participants receiving L-carnitine alone had no increase in muscle carnitine content.
  • Participants receiving L-carnitine + 80 grams of carbohydrate had around a 10% increase in muscle carnitine content. [To put that into perspective, 80 grams of carbohydrate is roughly equivalent to 2 cups of white rice or two medium potatoes.]
  • One study compared male vegetarians with male omnivores. The omnivores had no increase in muscle carnitine content, but the vegetarians did. [The study did not analyze the diets of the omnivores and vegetarians, but it is probably safe to assume that the carbohydrate content was higher on the vegetarian diet.]
  • There was no significant effect of L-carnitine on muscle mass or physical performance. [This is logical, given the minimal effect of L-carnitine supplementation on muscle carnitine levels.

Thus, this review found little evidence that L-carnitine supplementation was good for you. It resulted in little or no increase in muscle carnitine levels or in physical performance.

  • Two of the 11 studies measured plasma TMAO levels. These studies found that L-carnitine supplementation resulted in a significant increase in plasma TMAO levels.

Thus, this review found some evidence that L-carnitine supplementation might be bad for you.

What Is The Truth About Carnitine And Heart Disease?

The TruthIs carnitine good for you? With respect to this question, the conclusions of this review are similar to the conclusions of other health experts.

For example, in their Fact Sheet On Carnitine For Health Professionals the NIH states “Some athletes take carnitine to improve performance. However, twenty years of research finds no consistent evidence that carnitine supplements can improve exercise or physical performance in healthy subjects—at doses ranging from 2–6 grams/day administered for 1 to 28 days. For example, carnitine supplements do not appear to increase the body’s use of oxygen or improve metabolic status when exercising, nor do they necessarily increase the amount of carnitine in muscle.”

The NIH fact sheet goes on to list some diseases causing muscle loss or muscle weakness, for which L-carnitine supplementation is appropriate. However, in these cases, the carnitine supplementation should be recommended by health professionals.

Is carnitine bad for your heart? The link between carnitine and heart disease risk is a bit more complicated. As I mentioned above, there is an association between red meat consumption and blood TMAO levels and an association between blood TMAO levels and heart disease.

Is it TMAO that increases the risk of heart disease or is it some other component (saturated fat, for example) of red meat that increases the risk of heart disease? Nobody knows. More research is needed.

There is also a “red herring” that complicates the TMAO story. It turns out that TMAO helps fish survive the high pressures they encounter in the deep ocean. Thus, many fish are high in TMAO, and fish consumption also increases blood TMAO levels.

Are the bad effects of TMAO in fish outweighed by the heart healthy components in fish (omega-3s, for example)? Nobody knows. More research is needed.

To summarize:

1) There is no reason to take L-carnitine supplements unless directed by your health professional. There is little evidence they will help your physical performance. There is also no good evidence to support the other benefits of L-carnitine you find listed on Dr. Strangelove’s blog or the website of your favorite supplement company.

2) L-carnitine supplements may be bad for your heart, but much more research will be needed to be sure. [Note: Based on what we know about the role of gut bacteria in TMAO production, vegans could probably take L-carnitine supplements without causing an increase in TMAO levels. However, that is probably a moot point. There is no evidence that L-carnitine is more effective for vegans than it is for omnivores.]

The Bottom Line 

If you are a weightlifter or bodybuilder, chances are you are taking an L-carnitine supplement, or a protein shake fortified with L-carnitine. That is because L-carnitine has been promoted for increasing muscle mass and physical performance for so long that most people have come to believe it must be true. Is it true, or is it just another food myth?

On the flip side, recent studies have suggested that the carnitine in red meat might be bad for your heart. Could the same be true for L-carnitine supplements? Could they also be bad for your heart?

A recent review looked at these questions. Here are the conclusions of the review:

  • Participants receiving L-carnitine alone had no increase in muscle carnitine content.
  • Participants receiving L-carnitine + 80 grams of carbohydrate had around a 10% increase in muscle carnitine content. [To put that into perspective, 80 grams of carbohydrate is roughly equivalent to 2 cups of white rice or two medium potatoes.]
  • There was no significant effect of L-carnitine on muscle mass or physical performance. [This is logical, given the minimal effect of L-carnitine supplementation on muscle carnitine levels.

Thus, this review found little evidence that L-carnitine supplementation was beneficial. It resulted in little or no increase in muscle carnitine levels or in physical performance.

  • This review also found that L-carnitine supplementation resulted in a significant increase in plasma TMAO, a compound that has been associated with an increased risk of heart disease.

Thus, this review found some evidence that L-carnitine supplementation might be bad for you.

The NIH has also issued a fact sheet for health professionals summarizing research on L-carnitine over the past 20 years. The conclusions from their fact sheet can be best summarized as:

1) There is no reason to take L-carnitine supplements unless directed by your health professional. There is little evidence they will help your physical performance. There is also no good evidence to support the other benefits of L-carnitine you find listed on Dr. Strangelove’s blog or the website of your favorite supplement company.

2) L-carnitine supplements may be bad for your heart, but much more research will be needed to be sure.

For more details read the article above.

These statements have not been evaluated by the Food and Drug Administration. This information is not intended to diagnose, treat, cure or prevent any disease.

Can You Create Your Personal Fountain Of Youth?

Can A Healthy Lifestyle Improve Your Healthspan?

Author: Dr. Stephen Chaney

Fountain Of YouthEver since Ponce de Leon led an expedition to the Florida coast in 1513, we have been searching for the mythical “Fountain Of Youth”. What does that myth mean?

Supposedly, just by immersing yourself in that fountain you would be made younger. You would experience all the exuberance and health you enjoyed when you were young. There have been many snake oil remedies over the years that have promised that. They were all frauds.

But what if you had it in your power to live longer and to retain your youthful health for most of those extra years. The ability to live healthier longer is something that scientists call “healthspan”. But you can think of it as your personal “Fountain Of Youth”.

Now comes the important question, “Can a healthy lifestyle improve your healthspan?” We know a healthy lifestyle is good for us. Most of us know what a healthy lifestyle is. But it’s so hard. Is it worth it? Will it actually increase our lifespan? Will it increase our healthspan?

Today I am sharing two studies from the prestigious Harvard T.H. Chan School of Public Health that answer those questions.

How Were The Studies Done?

clinical studyThese studies started by combining the data from two major clinical trials:

  • The Nurse’s Health Study, which ran from 1980 to 2014.
  • The Health Professional’s Follow-Up Study, which ran from 1986-2014.

These two clinical trials enrolled 78,865 women and 42,354 men and followed them for an average of 34 years. During this time there were 42,167 deaths. All the participants were free of heart disease, type 2 diabetes, and cancer at the time they were enrolled. Furthermore, the design of these clinical trials was extraordinary.

  • A detailed food frequency questionnaire was administered every 2-4 years. This allowed the investigators to calculate cumulative averages of all dietary variables.
  • Participants also filled out questionnaires that captured information on disease diagnosis every 2 years with follow-up rates >90%. This allowed the investigators to measure the onset of disease for each participant during the study. More importantly, 34 years is long enough to measure the onset of diseases like heart disease, diabetes, and cancer – diseases that require decades to develop.
    • The questionnaires also captured information on medicines taken and lifestyle characteristics such as body weight, exercise, smoking and alcohol use.
  • For analysis of diet quality, the investigators use something called the “Alternative Healthy Eating Index”. [The original Healthy Eating Index was developed about 10 years ago based on the 2010 “Dietary Guidelines for Americans”. Those guidelines have since been updated, and the “Alternative Healthy Eating Index” is based on the updated guidelines.] You can calculate your own Alternative Healthy Eating Index below, so you can see what is involved.
  • Finally, the investigators included five lifestyle-related factors – diet, smoking, physical activity, alcohol consumption, and BMI (a measure of obesity) – in their estimation of a healthy lifestyle. Based on the best available evidence, they defined “low-risk” in each of these categories. Study participants were assigned 1 point for each low-risk category they achieved. Simply put, if they were low risk in all 5 categories, they received a score of 5. If they were low risk in none of the categories, they received a score of 0.
  • Low risk for each of these categories was defined as follows:
    • Low risk for a healthy diet was defined as those who scored in the top 40% in the Alternative Healthy Eating Index.
    • Low risk for smoking was defined as never smoking.
    • Low risk for physical activity was defined as 30 minutes/day of moderate or vigorous activities.
    • Low risk for alcohol was defined as 0.5-1 drinks/day for women and 0.5-2 drinks/day for men.
    • Low risk for weight was defined as a BMI in the healthy range (18.5-24.9 kg/m2).

Can A Healthy Lifestyle Improve Your Healthspan?

Older Couple Running Along BeachThe investigators compared participants who scored as low risk in all 5 categories with participants who scored as low risk in 0 categories (which would be typical for many Americans). For simplicity, I will refer to people who scored as low risk in 5 categories as having a “healthy lifestyle” and those who scored as low risk in 0 categories as having an “unhealthy lifestyle”.

The results of the first study were:

  • Women who had had a healthy lifestyle lived 14 years longer than women with an unhealthy lifestyle (estimated life expectancy of 93 versus 79).
  • Men who had a healthy lifestyle lived 12 years longer than men with an unhealthy lifestyle (estimated life expectancy was 87 versus 75).
  • It was not necessary to achieve a perfect lifestyle. Life expectancy increased in a linear fashion for each low-risk lifestyle behavior achieved.

The authors of the study concluded: “Adopting a healthy lifestyle could substantially reduce premature mortality and prolong life expectancy in US adults. Our findings suggest that the gap in life expectancy between the US and other developed countries could be narrowed by improving lifestyle factors.”

The results of the second study were:

  • Women who had a healthy lifestyle lived 11 years longer free of diabetes, heart disease, and cancer than women who had an unhealthy lifestyle (estimated disease-free life expectancy of 85 years versus 74 years).
  • Men who had a healthy lifestyle lived 8 years longer free of diabetes, heart disease, and cancer than men who had an unhealthy lifestyle (estimated disease-free life expectancy of 81 years versus 73 years).
  • Again, disease-free life expectancy increased in a linear fashion for each low-risk lifestyle behavior achieved.

The authors concluded: “Adherence to a healthy lifestyle at mid-life [They started their analysis at age 50] is associated with a longer life expectancy free of major chronic diseases. Our findings suggest that promotion of a healthy lifestyle would help reduce healthcare burdens through lowering the risk of developing multiple chronic diseases, including cancer, cardiovascular disease, and diabetes, and extending disease-free life expectancy.”

Can You Create Your Personal Fountain Of Youth?

questionsI posed the question at the beginning of this article, “Can you create your personal Fountain Of Youth”?” These two studies showed that you can improve both your life expectancy and your disease-free life expectancy by simply changing your lifestyle. So, the answer to the original question appears to be, “Yes, you can improve your healthspan. You can create your personal “Fountain of Youth.”

However, as a nation we appear to be moving in the wrong direction. The percentage of US adults adhering to a healthy lifestyle has decreased from 15% in 1988-1992 to 8% in 2001-2006.

Finally, I know you have some questions, and I have answers.

Question: What about supplementation? Will it also improve my healthspan?

Answer: When the investigators analyzed the data, they found that those with the healthiest lifestyles were also more likely to be taking a multivitamin. So, they attempted to statistically eliminate any effect of supplement use on the outcomes. That means these studies cannot answer that question.

However, if you calculate your Alternate Healthy Eating Index below, you will see that most of us fall short of perfection. Supplementation can fill in the gaps.

Question: I cannot imagine myself reaching perfection in all 5 lifestyle categories? Should I even try to achieve low risk in one or two categories?

Answer: The good news is that there was a linear increase in both life expectancy and disease-free life expectancy as people went from low-risk in one category to low-risk in all 5 categories. I would encourage you to try and achieve low risk status in as many categories as possible, but very few of us, including me, achieve perfection in all 5 categories.

Question: I am past 50 already. Is it too late for me to improve my healthspan?

Answer: Diet and some of the other lifestyle behaviors were remarkably constant over 34 years in both the Nurse’s Health Study and the Health Professional’s Follow-Up Study. That means that the lifespan and healthspan benefits reported in these studies probably resulted from adhering to a healthy lifestyle for most of their adult years.

However, it is never too late to start improving your lifestyle. You may not achieve the full benefits described in these studies, but you still can add years and disease-free years to your life.

How To Calculate Your Alternative Healthy Eating Index 

You can calculate your own Alternative Healthy Eating Index score by simply adding up the points you score for each food category below.

Vegetables

Count 2 points for each serving you eat per day (up to 5 servings).

One serving = 1 cup green leafy vegetables or ½ cup for all other vegetables.

Do not count white potatoes or processed vegetables like French fries or kale chips.

Fruits

Count 2½ points for each serving you eat per day (up to 4 servings).

One serving = 1 piece of fruit or ½ cup of berries.

          (do not count fruit juice or fruit incorporated into desserts or pastries). 

Whole Grains

Count 2 points for each serving you eat per day (up to 5 servings).

One serving = ½ cup whole-grain rice, bulgur and other whole grains, cereal, and pasta or 1 slice of bread.

(For processed foods like pasta and bread, the label must say 100% whole grain).

Sugary Drinks and Fruit Juice

Count 10 points if you drink 0 servings per week.

Count 5 points for 3-4 servings per week (½ serving per day).

Count 0 points for 7 or more servings per week (≥1 serving per day).

One serving = 8 oz. fruit juice, sugary soda, sweetened tea, coffee drink, energy drink, or sports drink.

Nuts and Beans

Count 10 points if you eat 7 or more servings per week (≥1 serving per day).

Count 5 points for 3-4 servings per week (½ serving per day).

Count 0 points for 0 servings per week.

One serving = 1 oz. nuts or seeds, 1 Tbs. peanut butter, ½ cup beans, 3½ oz. tofu.

Red and Processed Meat

Count 10 points if you eat 0 servings per week.

Count 7 points for 3-4 servings per week (½ serving per day).

Count 3 points for 3 servings per week (1 serving per day).

Count 0 points for ≥1½ servings per day.

One serving = 1½ oz. processed meats (bacon, ham, sausage, hot dogs, deli meat)

          Or 4 oz. red meat (steak, hamburger, pork chops, lamb chops, etc.)

Seafood

Count 10 points if you eat 2 servings per week.

Count 5 points for 1 serving per week.

Count 0 points for 0 servings per week.

1 serving = 4 oz.

Now that you have your total, the scoring system is:

  • 41 or higher is excellent
  • 37-40 is good
  • 33-36 is average (remember that it is average to be sick in this country)
  • 28-32 is below average
  • Below 28 is poor

Finally, for the purposes of these two studies, a score of 37 or higher was considered low risk.

The Bottom Line 

Two recent studies have developed a healthy lifestyle score based on diet, exercise, body weight, smoking, and alcohol use. When they compared the effect of lifestyle on both lifespan (life expectancy) and healthspan (disease-free life expectancy), they reported:

  • Women who had had a healthy lifestyle lived 14 years longer than women with an unhealthy lifestyle.
  • Men who had a healthy lifestyle lived 12 years longer than men with an unhealthy lifestyle.
  • Women who had a healthy lifestyle lived 11 years longer free of diabetes, heart disease, and cancer than women had an unhealthy lifestyle.
  • Men who had a healthy lifestyle lived 8 years longer free of diabetes, heart disease, and cancer than men who had an unhealthy lifestyle.
  • It is not necessary to achieve a perfect lifestyle. Lifespan and healthspan increased in a linear fashion for each low-risk lifestyle behavior (diet, exercise, body weight, smoking, and alcohol use) achieved.
  • These studies did not evaluate whether supplement use also affects healthspan.
    • However, if you calculate your diet with the Alternate Healthy Eating Index they used (see above), you will see that most of us fall short of perfection. Supplementation can fill in the gaps.

The authors concluded: “Our findings suggest that promotion of a healthy lifestyle would help reduce healthcare burdens through lowering the risk of developing multiple chronic diseases, including cancer, cardiovascular disease, and diabetes, and extending disease-free life expectancy.”

For more details, including how to calculate your Alternative Healthy Eating Index, read the article above.

These statements have not been evaluated by the Food and Drug Administration. This information is not intended to diagnose, treat, cure, or prevent any disease.

Health Tips From The Professor